
AD-A273 612 'Ahal-.ik~

Proceedings

Hawaiian Winter Workshop

University of Hawaii at Manoa

93-29930 January 12-15, 1993

iu11111V
Is 12049_



AceolFof

NTIS CRA&a;o-jicdAa (I uio aUTIC I AB

Jjjztitication........- .L~1 ......... ~'

BY ............... -

Dist ibutlofl I

Availability Codes a=Z QUALJ¶'y TNSPECTED 5

PROCEEDINGS PETER MOLLER
'Aha Huliko'a DIANE HENDERSON
Hawaiian Winter Workshop editors
University of Hawaii at Manoa
January 1 2-1 5, 1 993

Sponsored by the U.S. Office of Naval Research,
the School of Ocean and Earth Science and Technology,
and the Department of Oceanography, University of Hawaii

SOEST Special Publication * 1993



Cover, title page design by Brooks Bays, SOEST Publication Services

ii



FOREWORD

The seventh 'Aha Huliko'at Hawaiian Winter Workshop was held January 12-5, 1993 at
the East-West Center in Honolulu, Hawaii. The topic was "Statistical Methods in Physical
Oceanography."

Physical oceanographers deal with randomness and uncertainties when analyzing ocean
data and formulating ocean models. They apply concepts and results from probability
theory, statistical inference and stochastic processes. The size and complexity of
oceanographic problems often prevent the application of standard methods, and physical
oceanographers are faced with the task of inventing special methods that deal with the
peculiarities of their problems in a sensible way. These special methods were the object of
the workshop's lectures and discussions. The lectures are published in these proceeding.
The order of the papers follows loosely the agenda of the workshop covering a variety of
oceanographic observations, methods for efficient flow and data representation,
frequentist versus Bayesian inference, data assimilation, and idealized dynamics. Also
included is a summary of the meeting.

The workshop, made possible by a grant from the U.S. Office of Naval Research, was
hosted by the Department of Oceanography of the School of Ocean and Earth Science and
Technology of the University of Hawaii. The excellent facilities of the East-West Center
and the capable staff directed by James McMahon contributed greatly to the success of the
meeting. The local organization and logistical arrangements were expertly handled by
Phyllis Haines. This proceedings volume came into existence through the creative and
dedicated research of the scientists who gathered in Hawaii and provided the articles that
follow. Barbara Jones and May Izumi provided skillful production assistance.

Peter Muller Department of Oceanography
Diane Henderson School of Ocean and Earth Science and Technology

1000 Pope Road
University of Hawaii
Honolulu, HI 96822

t'Aha Huliko'a is a Hawaiian phrase meaning an assembly that seeks into the depth of a matter.
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MEASUREMENT AND ANALYSIS
OF THE ENERGY-CONTAINING EDDIES
OF TURBULENT FLOWS IN THE COASTAL OCEAN

Ann E. Gargett
Institute of Ocean Sciences, Sidney, B.C. Canada

ABSTRACT

Acoustic remote sensing techniques now allow measurement of the three-dimensional
velocity field associated with the large-scale eddies of turbulent geophysical flows in the
coastal ocean. Such techniques, continuous in time and requiring a minimum of technical
supervision, are essential for assessment of turbulent coastal regimes, because of short
space and time scales of variability. Algorithms under development should provide
estimates of kinetic energy E, length scales, and kinetic energy dissipation rate E of the
turbulence, as well as the shear dU/dz of the mean flow. Recent addition of a towed CTD
allows a direct measurement of buoyancy flux 'w-, a major goal of ocean microscale
measurements over the last two decades. Preliminary data are available to compare this
direct measurement with the widely used estimate ýV = 0. 2po0g-' e, made from

measurements of dissipation rate.

1. AN ACOUSTIC REMOTE SENSING TOOL FOR TURBULENCE RESEARCH

While shipborne acoustic Doppler current profilers (ADCPs) have been widely used for
measuring "mean" currents in the surface layers of the ocean, use of a commercial ADCP
for turbulence research required modification to both hardware and software. The
hardware modification was to rotate one of the four beams of a standard Janus-
configuration transducer head to vertical, leaving the other three beams at the normal
(300) slant angle from vertical. When mounted on a ship (Fig. 1), this beam (133) is closely
adjusted to vertical (±_0.50), allowing a direct and unequivocal measurement of vertical
velocity w. A combination of B4 and B3 provides an estimate of across-ship velocity
component u, while a combination of B2 and B3 (or of Bl and B3) provides the along-
ship component v. These horizontal velocity components can be affected by the slant-beam
configuration, so this account will mostly use the straightforward measurement of w.
Direct shipborne measurement of w is possible with incoherent Doppler systems because
coastal turbulence is vigorous, and because the inner coastal waters of British Columbia,
in which these data were taken, provide low levels of platform motion contamination. If a
stable platform can be provided, however, recent development of more accurate coded-
pulse Doppler systems suggests that the techniques discussed here will soon be extensible
to the deep ocean.

, 1



2 GARGETT

Figure 1. (a) Hardware modification
(a) •to standard ADCP: one beam (B3)

has been rotated to vertical. (b)
Acoustic beam orientation relative to
ship-based coordinates (x, y, z).

M In

(b)

Special acquisition software was written to allow recording of raw (single-ping) beam

velocities and acoustic amplitudes. After each ping, the processor associated with a single

beam returns time (radial distance)-binned estimates of radial velocity, defined positive

when the velocity is towards the transducer, and a measure of the strength of the return

signal. In acquisition mode, both fields are recorded for all four beams, while up to four

fields can be selected for colour-coding and real-time display. At present, we use

amplitude signal only from the vertical beam, in order to locate the bottom (or lack of it)

in the velocity records; subsequent processing uses only the water column velocities.

Single-ping velocity data are noisy. Figure 2a is a (poor) rendition of raw data from a

turbulent tidal front. [An apology: Grey-scale rendering of signed quantities such as

velocity is difficult, but must be attempted when colour graphics are not available. For

presentation in this paper, I have chosen to bin the data very coarsely, effectively grey-

scale 'contouring' the fields. With such coarse-binning, it is possible to use a symmetric

grey-scale that differs only in the textures assigned to the bins nearest zero (center): thus

in Figure 2, a maximum (black) that occurs as a progression through light grey (small

circles) is a maximum downwards (upwards) w. While this presentation works reasonably

well with smooth fields, it does a very poor job of the original noisy raw data in Figure

2a.] The standard technique for reducing the noise level of Doppler velocity estimates is to

average values from consecutive pings: Figure 2b illustrates this technique, using an
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Figure 2. Grey-scale coded representation of the (signed) field of w as measured by the vertical beam: (a)
Raw (single-ping) data, noise standard deviation or 10 cm/s. (b) Standard ADCP processing required
to produce or = 2 cm/s (boxcar average over 25 pings) fails to resolve the spatial structure of the turbulent
flow in this tidal front. (c) Filtering with a sequential running mean filter yields a7 = 2 cm/s with spatial
resolution of about 20 m.

average of 25 pings to reduce noise standard deviation from 10 cm/s to 2 cm/s. With post-
processing, this brute streugth technique, which severely degrades much of the spatial
structure that is present, is easily replaced by a filter that produces the same 2 cm/s
standard deviation, but retains spatial structure down to horizontal wavelengths of order
20 m (Fig. 2c).
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2. WHY DO WE NEED THE VERTICAL BEAM?

While significant vertical velocities do not guarantee that a flow is turbulent, flows are not
turbulent without significant vertical velocities. In survey mode, we may thus look for
large vertical velocity as a necessary condition for turbulence. Having found this
condition, such flows may be subject to more rigorous scrutiny with regard to
characteristics-for example relative "eddy" and internal wave time scales, vertical
buoyancy flux, phase between w and fluctuation density-which we associate with
turbulence. Thus accurate measurement of the vertical velocity field is essential to
turbulence measurement.

With a standard ADCP, velocity components are calculated under the assumption that the
velocity field is uniform over the spread of slant beam pairs (Fig. 3a). If this is the case, the
horizontal component v in the plane of B I and B2 makes contributions of opposite sign to
the beam velocities V I and V2 in bin b; hence slant beam vertical velocity
ws = (VI+V2)/2 cos 300. This slant-beam vertical velocity is shown in Figure 3c, below the
field of w measured directly by the vertical beam (Fig. 3b) for a section of data from a tidal
front. The obvious differences between w and ws are caused by the fact that the turbulent
field has spatial scales that are comparable to the slant beam spread.

Scatter plots of ws vs w (Fig. 4) show that while ws = w at shallow depths (a), the
correlation decreases with increasing depth (b); By the deepest bins (c), ws is essentially
uncorrelated with w, although both remain significantly above the noise level, shown in
(d). This must be expected to be a normal state of affairs in coastal waters, where the
water depth H sets a maximum outer scale for turbulent eddies (the actual outer scale may
be even smaller, because of conditions of shear or stratification). With the 300 angle of the
standard slant beam pairs, slant beam separation at depth H is H, i.e., the scale at or below
which we expect turbulent energy to reside. Accurate measurement of the vertical velocity
field in coastal areas thus clearly requires the special vertical beam that is part of the
DQOppler Turbulence system (DOT).
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Figure 3. (a) Accurate determination of w from two slant beams (B I and B2) requires that the velocity
field be uniform over the (increasing with depth) horizontal spread between the beams. Fields of (b) w from
B3 and (c) ws from Bl1and B2 differ considerably in this tidal front, suggesting that this requirement is not
met.
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60 60 Figure 4. Scatter plots of ws,

40 (a1) 40 (b) vertical velocity determined
from the paired slant beams BI20 -,, 20-÷ :'•

20 2-:and B2, versus the "true" w
0 o 'measured from B3, for various

Sdepths (a) 23 m, (b) 112 m, and

-20 -20 (c) 201 m; (d) is noise level,
-40- 40 "::taken at slack tide in a sheltered
-•location. Near the transducer,
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3. AN ALBUM OF COASTAL MIXING

With the shipborne, semi-automated system described above, it is possible to survey
coastal waters for locations and processes that cause significant turbulence. Our
experience is that most intense turbulence is associated in some way with flow geometry
such as submarine sills, horizontal channel constriction, or sharp changes in channel
direction. Coastal turbulence varies rapidly in time, since it is driven predominantly by the
tides and is clearly modulated on the neap/spring cycle.

Figure 5 is a sampler of the kind of mixing regimes found in B.C. coastal waters. The
depth range of the measurements vary, as marked; the horizontal scale is -1100 m. In the
upper panel (a) is a record taken in mid-winter at a time of minimum water column
stratification. The tide floods from left to right over a sharp submarine sill that nearly
blocks a tidal channel located in the southern Strait of Georgia. Water descends the
downstream side of the sill with vertical velocity near I m/s; the subsequent flow exhibits
intense fluctuations of vertical velocity far downstream. The centre panel (b) is another
situation in which the tide floods from left to right across a sill; this however is a silled,
fjord-type inlet, at a time of very strong near-surface density stratification. Whether
because of this stratification "cap" or because of the gentler sill relief, dense water from
outside the sill is found entering the inlet on the flood as a bottom boundary current, most
visible in the vertical velocity field at those places where it accelerates downwards with
increases in bottom slope. A final example in Figure 5c shows a turbulent surface jet
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flowing (left to right) out of a narrow and shallow tidal passage. Water exiting the passage
is well-mixed and lighter than the deeper water outside, hence flows out at the surface.
Abrupt increase in channel width causes rapid shallowing of the jet just outside the channel
mouth.

5

(a): z(ii)

(a ..... .... .499 ;ZM ...

(!)) •....'.. .. .. z...

236

I5

(C)

97

-R 0 +R afts

Figure 5. A variety of flows generate turbulence in the coastal ocean; the associated w fields are displayed
in grey-scale. Recall that the sign of w maxima (black) may be determined by the surrounding pattern,
light grey for downwards, circles for upwards vertical velocity. In all cases the mean horizontal tidal flow
is from left to right. (a) weakly stratified flow over a sill: R=50 cm/s, (b) strongly stratified inflow to a
coastal fjord: R=20 cm/s, (c) a "jet" of well-mixed fluid out of a narrow tidal channel: R=20 cm/s.
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4. ESTIMATION OF TURBULENCE QUANTITIES

What properties of turbulence would we like to know? - turbulent kinetic energy E, the
rate c at which it is being dissipated, and the associated vertical fluxes of mass and
momentum, are some that spring to mind. The DOT system, augmented by sporadic
vertical profiles of density, should offer information in nearly all of these areas.

Turbulent kinetic energy:

The definition of turbulent kinetic energy per unit mass as E = 1/2 (u2 + v2 + w2) uses the
components (u, v, w) of the turbulent velocity M, itself defined as the (zero-mean) part left
after removal of a "mean" velocity L-- (U, V, W= 0) (where Uand Vare normally
assumed to be functions of z only) from the total velocity LT- Inherent in this so-called
Reynolds decomposition of the flow is an appropriate definition of the averaging process
that defines the "mean" flow. While the assumption that W = 0 seems safe, it is difficult to
decide how to form a "mean" horizontal component in situations where the flow is
substantially inhomogeneous. The problem is illustrated in the record of Figure 6 which
shows (a) the horizontal velocity component v (relative to the ship) along the axis of a
tidal channel and (b) vb, the baroclinic part of this field, formed by removing the local
depth-average of v. At the beginning (left) of this record, vb has a three-layer structure,
with surface and bottom layers moving more rapidly than a mid-depth layer. By the end
(right) of this section of record, the structure had changed to bottom-intensified two-layer
flow. It is not at all clear what horizontal scale should be chosen for calculating a "mean"
horizontal velocity component V, nor how that scale should change with time (horizontal
distance).

Because of this uncertainty as to the appropriate averaging for the horizontal "mean"
components, the cleanest definition of E would seem to be Ei = 3/2 W), where the
overbar denotes an averaging length such that w = 0, and the subscript is a reminder that
this is an isotropic estimate, obtained from the vertical velocity component only.

Turbulent kinetic energy dissipation rate c:

Also of interest is the rate at which mean flow energy is being removed to dissipation
scales by the action of the turbulence. The possibility of remote measurement of this
quantity has its roots in the work of Batchelor and Townsend (1948), who showed that
the large scale eddies of turbulence lose their energy to the turbulent energy cascade
(Kolmogoroff, 1941) within at most a few eddy turnover times. Since energy that enters
the cascade is delivered to dissipation scales, this means that

S(l)
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(a) Z

3V4

374

(a) - -15o

(b)-O0 0 40

Figure 6. (a) Field of horizontal velocity v relative to the ship (determined from the fore-aft slant beam
pair B1,B2) as the ship moves along the axis of a tidal channel. Variations in ship speed and/or the
barotropic field are removed in (b) the baroclinic field vb = v - <v> where <v> is the (local) depth-
averaged value. The strongly inhomogeneous nature of the horizontal flow makes calculation of horizontal
turbulent velocity components difficult.

where T - e/rw is the turnover time of an eddy of scale e and rms turbulent vertical
velocity rw. This is only a scale relationship, leaving an unknown constant to be
determined. Direct measurements of c, rw, and t from the atmospheric boundary layer
have confirmed the relation (1) above, and suggest that the constant involved is between 3
and 5 (Wamser and Muller, 1977).

Thus for both Ei and c estimates, it is necessary to derive values for rw, an rms velocity
typical of the energy-containing eddies of the turbulent field; for E, we need in addition a
value for the characteristic length scale of such eddies. Meteorologists identify the
turbulent length scale t as the location of the peak of a spectrum of vertical velocity as a
function of horizontal wavenumber, the turbulent velocity scale rw as the square root of
the spectral integral, a procedure that makes sense in view of the long and homogeneous
records that can be obtained from meteorological towers. Unfortunately, the marked
inhomogeneity of the turbulent fields in coastal waters means that "a" wavelength doesn't
remain constant over the large number of wavelengths necessary for its determination by
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remain constant over the large number of wavelengths necessary for its determination by
such a Fourier technique. Wavelet analysis (Farge, this volume) may offer a more
sophisticated means of determining local wavelength and energy values, but for now, I
have used a very simple algorithm, shown schematically in Figure 7. The curve is that of
vertical velocity w, measured at constant depth (bin), as a function of horizontal

Figure 7. Schematic
of a simple algorithm
for determining local
values of large-

+pr eddy turbulence
0 parameters (half-

vertical velocity and
length scale) needed
for remote estimate of
-: for details, see

L text.
aw

awl

distance x: horizontal dashed lines denote ± o-, one standard deviation of the measurement
noise level about the zero mean. Starting with a point (say that marked by the open circle)
where IwI > o, the algorithm searches for locations of the nearest preceding and following
points with Iw I > o- but of the opposite sign (respectively P and F in Fig. 7). The
distance L between these points is taken as a local estimate of a half-wavelength. The
average of w over L, denoted aw, is similarly considered to be the average of w over a
half-wavelength. One then moves to point F and repeats the process, resulting in new
estimates L 'and aw ' These local estimates are assigned to the region over which they are
calculated; in the (usually small) regions of overlap, the first (in space/time) estimates are
arbitrarily chosen. Figure 8b shows the field of aw that results when this algorithm is
applied to the tidal front data of Figure 8a.

Assuming that the othetr iJawavelength exists (although not necessarily in the plane of
measurements), the values of aw are converted to a corresponding root-mean-square value
(rw) by the scaling factor (I. 11) apercqvriate for a pure sinusoid, then used with the length

scale estimate t = 2L (not shown) to form the estimate ofE, e2 = 11.11 awl3/2L, which

is shown in logarithmic form in Figure 8c. Note that this estimate of rw can also be used in
the estimate E, = 3 / 2(W2 ) = 3 / 2 rw2 of turbulent kinetic energy.

How much one may trust such an estimate of E can be de.ermine ' by comparing it with
values determined directly, by integration of the specti am of small-scale shear measured in
situ. Vertical profiles of such direc" ' "-Rst,,'ements of E were taken at the two locations
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Figure 8. (a) Measured field of w in a tidal front. (b) Associated field of aw derived using the algorithm
depicted in Figure 7; ow and L (not shown) can be used to form a field of e2, estimated turbulent kinetic
energy dissipation rate, shown as log(e2) in the grey-scale presentation of (c). The vertical lines in (c)
denote the launch times of a turbulence microprofiler (operated by Dr. J. Mourn, Oregon State University)
making direct measurements of E: maximum profile depths are marked by arrows.
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marked in Figure 8c by Jim Mourn of Oregon State University. Figure 9(ab) compares
the direct profiler measurement (log E, light line) with the indirect estimate log (e2) for
each profile. The heavy line is the logarithm of the average value of e2 over ± 10 pings
surrounding the launch of the profiler; the points give some idea of the spread of
individual estimates within these 21 pings. The agreement between the two estimates is
remarkably good for profile 65. In the subsequent profile, which went somewhat closer to
the bottom (about 300 m at both profile locations), we see a defect which tends to recur in
many such comparisons; namely a tendency for e2 to underestimate E near both the
surface and bottom boundaries of the flow. This may indicate the need to modify the
definition of turbulent length scale e. Hunt, Stretch and Britter (1988) suggest an alternate
form, which tends toward the type of internal scale determined here when the flow is far
from boundaries but toward the distance z to the nearest boundary when z is less than this
inner scale. Indeed, in measurements taken in the ocean surface layer, Agrawal and Hwang
(1991) demonstrate good correspondence between directly measured E and (rw)3/t, with
S= z. Such a modification to t, causing length scales to decrease, hence e2 to increase
near boundaries, would act to correct the discrepancies seen in Figure 9b.

As shown in Figure 9c, however, there are profiles in which there remain very large and
unsystematic differences between direct measurements and indirect estimates. Indeed,
given the high turbulent intensities and spatial/temporal inhomogeneities characteristic of
these flows, this seems scarcely surprising. Consider that the profiler is launched from the
stern of the ship, at which time and location the w field is assumed "known" from the
Doppler. Thereafter the profiler, falling verically, can be advected horizontally by the
local ambient flow, so does not necessaril) remain at this geographic launch position. Even
if it were to remain there, the flow field may change in the time taken for the profile
(typically 4-5 minutes for a profile to 300 m). Various checks for the likelihood of time
change can be devised, using the fact that the fore/aft slant beams allow two
measurements of v that are separated in time, but this is merely an effort to avoid a
statistical problem, that of estimating the degree of agreement (or disagreement) necessary
before a remote measurement of a non-stationary and inhomogeneous field can be
considered "proven" by a relatively sparse set of ground-truth measurements.

Vertical buoyancy (mass) flux:

Part of the reason one might like a remote technique for c is because for the last decade,
oceanographers have obtained what they often really want, the vertical buoyancy flux p' w,
from what they are able to get from microstructure profiler measurements, namely E, and a
model (Osborn, 1980) which suggests that under certain assumptions,

P- R= _ o0-6 (2)

p-g'
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Figure 9. Comparison of log(e) from direct profiler measurements (dashed lines) with the indirect
estimates log(e2) (solid lines) derived from the Doppler w field. The Doppler estimates are averaged over
±20 pings about the launch position of the profiler (see Figure 8): the individual points give some idea of
the variation in the estimates averaged. Profile 65 (a) shows remarkably good agreement, while Profile 66
(b) shows differences near top and bottom boundaries which suggest that the definition of t may
need modification in these regions. There remain profiles (c) in which agreement is low.

where Rj, the flux Richardson number, is the ratio of buoyancy sink to shear source terms
in the turbulent kinetic energy equation. Oceanographers add the further assumption that
Rf = 0.2, resulting in an estimate of buoyancy flux as a constant fractioi of the measured
turbulent kinetic energy dissipation rate E. If correct, this model means that a remote
measurement of E would correspond to a remote measurement of buoyancy flux.
However, the model has rarely been checked by comparison with direct flux
measurements, as these are extremely difficult to make in the ocean environment. The
small amount of evidence which does exist (Yamazaki and Osborn, 1993) suggests that Rf
is either not constant, or else considerably smaller than 0.2. Vertical turbulent fluxes (or
equivalently, turbulent diffusivities) are important products of oceanic microstructure
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measurements; it would be nice to know the circumstances (if any) under which such
dissipation-based estimates are accurate, hence remote measurement of buoyancy flux
would be possible.

With the addition of a towed CTD with finescale resolution (Ocean Sensors), it has
proven possible to make statistically significant measurements of buoyancy flux using the
DOT system. The CTD is towed at constant depth, just in front of the vertical beam of the
Doppler, for long periods. Figure 10 shows the CTD measurement of density, and the
associated time series of w measured in the Doppler bin that includes the CTD tow depth,
over about three hours. Below is an enlargement of a small section of the record (taking
care to preserve phase, the density field has been high-pass filtered to remove the very
largest scales of variation in water properties). Buoyancy flux will be a positive quantity if
on average downward(upward) vertical velocities carry lighter(heavier) water.

23.5 Figure 10. The top panel shows

S, , time series of CTD density
(light line), along with w (dark

22.5 line) from the Doppler bin
"+20 s within which the

CTD was towed. Before
"21.5 calculating fluxes, the density

E ' time series is high-pass filtered
(preserving phase) to remove
"the variance associated

-20 with large-scale water mass
change: the enlargement shows

0 1000 2000 300 4000 5000 6000 filtered density and w over one
of the interval lengths used in
the flux calculation.

+0.2 1,-
_+20 0

.. A ,•t ,. ^ . r•-0.2,,v0 7t Av-'V V -,. V A'"V I v v-- vPV "I V _)-' ý .0.

-20

4000 4100 4200 4300 4400
ping number

Figure II shows the direct flux estimates, formed by breaking the p'w records into pieces
of fixed length=spts, then forming (p' - 5)(w - iv) where the average is over spts. Error
bars are calculated from the variance of such estimates over the number(spts) of different
starting points, and an estimate of the number of independent values determined from the
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number of zero-crossings of w. The points in Figure I are the accompanying estimates of
the buoyancy flux made using (2) above with Rf/(1-RA) = 0.2 (V values were taken from
the Oregon State profiler measurements over a range of 6 m centered on the CTD tow
depth: courtesy of Jim Moum). While there is encouraging general agreement, i.e., values
tend to be high where the direct flux measurement is large and positive, low when the
direct measurement is not statistically different form zero, we face (again) the problem of
how best to average "point" estimates from the profiler for comparison with a more
broadly based determination from the towed measurement.
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Figure 11. Direct calculation of buoyancy flux (solid line) with estimated error bars (dashed lines) over
consecutive 400-point blocks of the time series shown in Figure 10. Circles are indirect estimates
of the flux, using profiler "point" measurements of f and the formula 0. 2pg-1 E.

CONCLUSIONS

It is now possible to make measurements of the vertical velocity field in turbulent coastal
flows, using a modified ADCP system. This allows us to site-survey for turbulence and,
once found, to investigate its spatial and temporal variability. From the w field
measurement, it will be possible to estimate turbulent kinetic energy E and possibly its
dissipation rate E. Addition of a towed CTD allows direct measurement of buoyancy flux:
if the model (2) relating buoyancy flux to E can be validated, remote measurement of E
would be equivalent to remote measurement of buoyancy flux, probably the feature of
turbulent flows that is of the greatest importance to coastal applications.

Are results from the coastal ocean likely to be valid when translated to offshore oceans?
From the data presented here, velocities characteristic of turbulence in the coastal ocean
are clearly much higher than those we expect offshore. However, coastal stratification is



16 GARGETT

also much larger: the combination makes the coastal ocean less different from that
offshore than one might think. The lower offshore signal level poses some challenges, but
ia stable platform can be provided, the increased accuracy available with the newer
coded-pulse sonars should allow this type of measurement to be made offshore as well:
one foresees applications in studies of surface and bottom boundary layers in particular. It
is my hope that the techniques discussed here will eventually prove as usefuul in the
offshore environment as they are in the coastal ocean.
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FINESCALE SHEAR AND STRAIN IN THE THERMOCLINE

Robert Pinkel and Steven Anderson*
Marine Physical Laboratory, Scripps Institution of Oceanography
La Jolla, California 92093-0213

Early studies of the temperature, density, and velocity fields in the sea were performed
from a "hydrographic" perspective. The expectation was that one could "chart the
oceans" structurally. The charts, once drawn, would remain valid. The tools of
hydrography were the reversing thermometer and the Nansen bottle. These yielded a
picture of the ocean interior on vertical scales of hundreds of meters, horizontal scales of
tens of kilometers. From very early on it was appreciated that smaller scale phenomena
were active in the ocean interior. Yet it was difficult to infer the role these small scale
motions played in maintaining the hydrographic fields.

With contemporary sensors far clearer pictures of the small-scale oceanic fields are
emerging. Yet the difficulty in quantifying the interaction with the hydrographic-scale
ocean remains. In this work we concentrate on motions of vertical scale 3-50 m. Over
this range, the scalar fields transition from highly skewed to nearly Gaussian behavior.
The objective of this work is to quantify this transition in a statistical sense, with a
particular focus on strain, shear and Richardson number, R = N2 / (-u / dz)2 . Here,
N2 = g/p dpI dz is the Vaisala frequency squared, where p is the potential density of the
sea water.

Strain statistics were investigated in a previous work (Pinkel and Anderson 1992,
henceforth PA 92) and are reviewed here in section 1. This previous study emphasized
the utility of describing the finescale fields from the perspective of "reversible fine
structure," a term introduced by Desaubies and Gregg (1981). They argued that the
extremely intense finescale variability of passive scalars in the thermocline results from the
simple straining of a smoother underlying field by the energetic internal wavefield.
Irreversible processes such as turbulent mixing (Cox et al. 1969) and thermohaline
intrusions (Stommel and Federov, 1967) typically play a secondary role. If one adopts the
reversible finestructure hypothesis, it becomes attractive to describe variations in a
coordinate system that is unaffected by the finescale straining. Using a repeatedly profiled
CTD, we track the vertical motion of a set of isopycnal surfaces. The time evolution of
both scalar and vector fields can be described in this isopycnal following frame (henceforth
referred to as a semi-Lagrangian frame), as well as in a conventional Eulerian frame.

*Now at Woods Hole Oceanographic lutitution
Woods Hole, MA 02543.
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In section 2, shear and Richardson number statistics are presented. Shear data are
obtained from a 161 kHz coded-pulse Doppler sonar mounted on the Research Platform
FLIP. Sonar resolution is sufficient that the vertical advection of the shear field by the
internal wavefield can be seen. This observation encourages the use of semi-Lagrangian
coordinates to describe time evolution of the shear. The modeling of Richardson number
takes on a different form in the semi-Lagrangian frame than in previous Eulerian studies,
such as Desaubies and Smith (1982) or Munk (1981). In section 2 a simple model is
derived and compared with the data. Agreement between model and data is encouraging.
A brief discussion of results and implications concludes this work.

1. FINESCALE STRAIN IN THE THERMOCLINE

Strain Measurement

The data considered for the strain study are a set of 9000 CTD profiles, from the surface
to 560 m. These were obtained during October 1986 from the Research Platform FLIP,
when it was located at 34'N, 127°W, approximately 500 km west of Point Conception,
California. Position was maintained to within 300 m by a two-point moor. Water depth at
the site is 4 km.

The CTDs used are Seabird Instruments model SBE-9s. Two such instruments are
profiled. The upper unit is cycled from the surface to 320 m. The lower system covers
the depth range 250-560 m. Profiles are repeated at 3-min. intervals. The drop rate of the
sensors is approximately 3.5 m s-1. It is not necessary to pump water th,-ough the
conductivity cell to achieve adequate spatial resolution at this drop rate. Following
response corrections to the temperature and conductivity sensors (PA 92), density profiles
are produced. A set of 560 isopycnals, of mean separation I m, is followed for the
duration of the experiment.

The 3-hour record presented in Figure 1 represents a small portion of the 18.75-day data
set. In it one sees a general trend toward decreasing isopycnal depth, associated with the
baroclinic tide. Superimposed on this trend are higher-frequency (1-2 cph) internal waves.
These are extremely coherent with depth. Against this large-scale background, the
finescale straining of the density field is seen. Isopycnals converge to form "sheets" of
high vertical gradient and diverge, forming low-gradient "layers." The typical time scale
for the finescale variation appears to be from one-half to several hours, in this short
record.
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Protagonists in the present study are

isopycnal displacement tl(t) = z(p, t) - z(p),

isopycnal separation Az4 (W) = z(p, t) - z(pj, t),

the normalized separation y#, (t) = Azj (t) / A;, ,

and the finite-difference strain ý'j (t) = Yj (t)- 1.

320

Figure 1. An example of isopycnal depth
fluctuations as seen in the PATCHEX dataset.
The statistics of isopycnal separation are the

360 focus of the present study.

I I I I I

05.00 06:00 07:00 08:00 09M00 10:00
Pacific Standard Time

Day 299, 1986

The Probability Density Functions of Strain

From the depth-time history of isopycnal displacement, strain statistics can be estimated in
two distinct ways. One can simply calculate the probability density functions (pdfs) of
separation between selected isopycnals pairs. This is the isopycnal following or "semi-
Lagrangian" approach. One can also monitor the separation statistics of that pair of
isopycnals that is bracketing a fixed reference depth. This provides an Eulerian view of
the strain field. Both Eulerian and semi-Lagrangian pdfs have been calculated from the
SWAPP data set. To investigate possible depth variability of the strain field, separate pdfs
are formed for discrete 100-m depth regions: 100-200 through 400-500 m. Density
functions for the 200-300 in region are presented in Figures 2 and 3, for mean isopycnal
separations of 1-10 m. Each pdf is formed from 9 xl0 data, sorted into 100 bins. The
data are not, however, mutually independent. Careful analysis (PA 92) suggests that there
are between 50 and 90 independent estimates per bin in a typical histogram. Sample pdfs
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Figure 2. Probability density functions of Figure 3. Probability density functions of
normalized separations, 1, formed in a semi- normalized separation 1, as in Figure 2 except
Lagrangian frame, for mean isopycnal separations formed in an Eulerian frame. Dotted lines give
1-10 m. Dotted lines give model Gamma pdfs, model Gamma pdfs, constrained to have mean
constrained to have unity mean and the observed and variance identical to the observations. Data
variance. Data from 200-300 m depth are from 200-300 m depth are presented.
presented.

have been formed for mean separations as great as 50 m. While these appear nearly
Gaussian at scales greater than 10 m, skewnes, and kurtosis estimates are significant to
separations of order 30 m (Fig. 4).

The observed pdfs have been fit to a variety of classical forms, including Rayleigh,
Weibull, Lognormal and Gamma. Significant discrepancies are subjectively apparent in all
comparisons, with the notable exception of the Gamma pdf, which fits very well (Figs.
2,3). The Gamma pdf has the form

G( x) = ffax'-1 e-PX
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with mean <x> = a/P and variance (x2)-(x)' = a/f (Papoulis 1984).

The semi-Lagrangian data are constrained to have (y) = 1,(Az) = Az, by initial choice of

isopycnals. Hence, a = JlAz. The fits presented in Figure 2 are thus one-parameter fits,
with sample variance matched to the model variance. The Eulerian observations are not
constrained to unity mean. These require two-parameter fits. The observed mean and
variance are used to set model pdf parameters in Figure 3.

The Gamma pdf is seen to fit the observations well in the 200-300 m depth range, except
at separations less than 4 m. The fits are comparable in the other depth ranges, with the
exception of the 300-400 m interval, where the Lagrangian pdfs appear distorted at
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small 7, over a range of Az = 3-7 m (PA 92). The fits could be improved by employing a
least-squares fitting procedure. Optimizing the fit, however, is not the point of the present
exercise.

A Statistical Model of Finescale Straia

Gamma pdfs are associated with the classical theory of Poisson processes. They describe
the statistics of separation between the occurrence of Poisson "events" (Papoulis 1984).
If, indeed, simple Poisson statistics describe the non-Gaussian behavior of the finescale
field, the problem of modeling the motion field in this regime can be significantly
advanced.

Considering the thermocline as a one-dimensional statistical process, we envision a set of
"Poisson tracers," whose vertical position is tracked from one realization of the process to
the next. Poisson statistics describe the occurrence of these tracers. The Poisson
probability function gives the probability of occurrence of k tracers in a dimensional
interval of length H:

P(n = klH) = (PcH)k e-oH (2)

The Poisson probability function has the interesting property that the mean number of
"events" occurring in an interval H, KOH, is equal to the variance of the number of events.

We define the normalized separation, y, between two Poisson tracers to be the ratio of the

instantaneous separation of the tracers to the mean separation, K0-1. The strain, , -1, is

assumed constant over the interval spanned by the tracers. Between adjacent tracer pairs,
values of strain are uncorrelated. Thus an individual realization of the strain profile is
discontinuous (Fig. 5b). However, the vertical profile of a passive scalar, 0, being strained
in this Poisson field is continuous (Fig. 5a). The profile is composed of a series of
constant gradient segments whose statistics are easily derived. The exponential
distribution, P(Az) = K0e- °, governs the probability of separation between adjacent
Poisson tracers, as well as the distance from arbitrary fixed points, Za,Zb, to the adjacent
tracers (Papoulis 1984). In a semi-Lagrangian study, the statistics of a specific pair of
adjacent tracers are followed from one realization to the next. From the exponential
distribution, one finds
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(AZ2)" K-2 ,

S(Y)2 - -I= I.
(1~2) -(r = ~(.Z2)'()L / (A =1

Thus, the strain variance as seen in a "tracer-following" frame is unity. While the tracer

separation scale, Ko, can be adjusted, the strain variance is fixed in this model.

In an Eulerian study one follows that pair, trio, or quartet of tracers that brackets the
arbitrary fixed reference depths Za and Zb. Different tracers may be involved from one
realization to the next. In the event that a single pair of tracers brackets the reference
depths, the separation between these tracers can be thought of as the sum of three terms:

Az.ket= (; -Z.)+ H +(Zb - z.,).

Here H = (Za - Zb). Using the exponential distribution, it is easily shown that

(A,-), = 2o' +H
(.) =4 2 + 4 '<H + H2  (4)

(YI) E (2+ KO0H )'"

In the limit of vanishing separation, H, the Eulerian strain variance has value 0.5. This is

again an inherent aspect of the Poisson model, independent of the adjustable parameter KO.

An Eulerian covariance function for strain can be derived:

JR (Z.,Zb) = RY (H) = [(A~jAz*)E(A)] (5)

Here Az,, gives the ;eparation between those Poisson tracers that bracket depth Z.
while Azk, gives the separation between those tracers spanning depth Zb. The brackets
imply averaging over separate realizations of the profile. Given the hypotheses of the
model, if one or more Poisson tracers occur between points Z. and Zb the strain will be
uncorrelated: R,(Z.,,Zb) = 0. If the points Za and Zb fall between successive Poisson

tracers, they will experience identical strain.
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For this case the covariance is given by R7 (H) = [(y2)E, - (yy_,P(, (Papoulis 1984). Here

(y2 )• - (y)' is the strain variance of that tracer pair that is bracketing Zo and Zb,

realization after realization. P0 is the probability that Z. and Zb are spanned by a single
pair of tracers. This is identically the probability that no Poisson tracers will be found in
the interval, H, between the reference depths. From (2), P0 = e--I". Combining (2) and

(3), one has

R 7(H) 2 + .0H2 e (6)

The corresponding vertical wavenumber spectrum of strain is given by

S(k) = 4i"<' Re[e20+2a"co) E2 (2(1 + 2nik / 1'0))]. (7)

Here E2 is the exponential integral function (Abramowitz and Stegun 1970). The
normalization is appropriate for a one-sided spectrum with k in cycles per meter. The
covariance and wavenumber spectrum of strain are presented in Figures 5c,d.

This Poisson model of the thermocline is powerful by virtue of its primal simplicity. The

single variable 1o describes all dimensional aspects of the model. The model successfully
links the strain correlation scale ,(', of order I m in the open-ocean pycnocline, with the
well-known cutoff of strain and shear that occurs near 10-m scale (Fig. 5d). There is no
need to invoke a critical Richardson number criterion here, as in Munk (1981). The model
predicts a spectral slope slightly steeper than the classical k"' form, at scales shorter than
10m.

The spectral level in the low wavenumber limit is 1. 109 jco-, for a one-sided spectrum with
wavenumber in units of cycles per meter. In the various Garrett-Munk models of the
internal wavefield (e.g., Munk 1981), the strain spectral level is given by SGm(k) = IEbj.
(Gregg and Kunze 1991), where E=6.3 x 10-5 is the dimensionless internal wave energy
parameter, and b = 1.3 x 103 m is the pycnocline scale depth. The G-M model best fits the
Patchex strain spectrum for values of the bandwidth parameter j. (Sherman 1989). For
wavenumbers 0.01 < k < 0.1, the Poisson and G-M model spectral levels are comparable if
i'0 = 1.1091I zEbj. = 1.37m-':j. = 1. The Poisson approach differs from the G-M model in
that the strain variance is fixed. The form of the wavenumber spectrum changes as the
spectral level is altered, such that the variance is preserved. Also, unlike the G-M
approach, the Poisson model relates variance to skewness, kurtosis, and higher-order
quantities as a function of vertical scale.
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Figure 5. A model vertical profile of a passive scalar, 0. (a). The profile consists of a series of constant
gradient regions. These correspond to the regions of constant strain (b), whose boundaries, {fz}, vary from

realization to realization as a Poisson process. The strain, (z, - z+,/) / X. has a spatial auto covariance (c)
and vertical wavenumber spectrum (d), here evaluated for KC0 = 1.1 m-1. Note that the Poisson scale K'o, of
order I m, is associated with a cutoff in the spectrum at a scale roughly 2x times larger.

2. FINESCALE SHEAR AND RICHARDSON NUMBER

Shear and Strain

The apparent success at modeling the strain field using a "reversible fine structure"
approach prompted a similar investigation of fine-scale shear. An initial data set was
collected during February and March 1990 in the surface waves processes experiment,
SWAPP. A 155-kHz Doppler sonar was mounted on the Research Platform FLIP and
operated in conjunction with the profiling CTD. During this period, FLIP was tri-moored
at 35*N, 127*W. Water depth at the site was approximately 4 km.
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The sonar obtained quality estimates of water velocity over the depth range 30-300 m,
with 5.5 m vertical resolution. It operated continuously over a 19 day period. However,
during the central period of the cruise, March 6 to 9, a large front passed under FLIP,
significantly altering the qualitative nature of the velocity and shear fields. We restrict the
subsequent study to the period before frontal passage, to avoid the atypical regime.

The profiling CTDs were similar to those used in the Patchex Experiment. In SWAPP,
however, the profiling rate was increased to once per 130 s, rather than the previous
180 s. The increased rate was selected to improve CTD derived estimates of vertical
velocity and strain rate. Profiles were achieved from the surface to a depth of 420 m.

SWAPP represents an evolutionary departure from previous FLIP-based examinations of
the thermocline. Rather than using long range (-1.2 kin) Doppler sonars of relatively low
(15 m) vertical resolution (e. g., Pinkel et al., 1987) here, a shorter range system with
higher resolution is used. The development of a practical scheme for coding the sonar
transmissions (Pinkel and Smith, 1992) enables the improved resolution and precision
attained in SWAPP.

For the first time, the resolution scale of the sonar approaches the vertical displacement
scale of the internal wavefield. When the shear field is closely examined the distortion due
to the vertical displacement of the wavefield is clearly seen. In Figure 6, a representative
12-hour segment of the shear field is presented. Superimposed on the plot are the depths
of a selected set of isopycnal surfaces. These illustrate the vertical displacement of the
wavefield. Instances where the low frequency shear is being advected by high frequency
waves are seen throughout the record.

While not a totally unexpected observation, the vertical advection of the low frequency
shear by high frequency internal waves represents an interesting reversal of the typical
view of wavefield kinematic behavior. It is more common to think of long wave-short
wave interactions in terms of the short (high frequency) waves being advected/refracted by
the long (low frequency) waves. In the oceanic thermocline, the "long" near inertial
waves can have shorter vertical wavelengths than the "short" (horizontal wavelength) high
frequency waves; hence, the opportunity to observe this distortion.

Modeling Shear and Richardson Number

The apparent displacement of the low frequency shear field by high frequency internal
waves has both dynamic and kinematic consequences. Here, we focus on the purely
descriptive problem, the appropriate modeling of shear and Richardson number statistics.
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Figure 6 suggests that the statistics will be quite different, depending on whether the data
are collected in an Eulerian or semi-Lagrangian frame.

The issue of the statistical independence of shear and strain is critical for understanding the
evolution of the Richardson number. Desaubies and Smith (1982), in a previous attempt
to model Ri, assumed the independence of these quantities. Munk (1981), in a separate
study, assumed that strain was effectively constant; only shear fluctuations affected the
Richardson number. Figure 6 suggests that the horizontal velocity and shear fields are
being simply advected by the vertical velocity. We can avoid the kinematic aspects of the
problem by shifting to an isopycnal following frame. However, a first order dilemma
remains. In the semi-Lagrangian frame, is the shear,

S[U (PI] (8)

truly independent of the strain, 7,2? If so, then the cross isopycnal velocity difference

Au u(p 1,t) -u(p 2,t) -- (9)

must be dependent on strain. The converse also holds. It is not possible that both Au
AND o)ulz be independent of strain.

To address this fundamcntal issue, a separate study was performed. The correlations
between shear squared, velocity difference squared, and inverse strain (Vaisala frequency
squared) were estimated. Non-zero correlation between quantities precludes the
possibility of statistical independence. In both semi-Lagrangian and Eulerian frames, the
shear squared - M correlation coefficient,

[[ ( du Z)2)2) -( P Id )2) I(V2) -(_) ]

was of order 0.5, for average spatial separations between isopycnals (semi-Lagrangian)

and vertical differencing intervals (Eulerian) of 4-20 m. (Desaubies and Smith (1982),
assumed this correlation to be zero.)
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Figure 6. Shear magnitude, [(du/ )2 +(o &)2]1/2 plotted as a function of depth and time. Darker
shading represents greater values of shear magnitude. Solid lines represent the depths of a selected set of
isopycnals of uniform mean separation. There is evidence of the shear layers being vertically advected
along with the density field by high frequency internal waves. This is seen most clearly at depths 80-200
m. Irregular shear variability below 300 m reflects imprecision in the sonar velocity measurement at great
range.4_=
In contrast, the correlation between velocity difference squared and N2 was negative, of
order -0.1 at 20 m scales, decreasing to -0.3 at 4 m mean isopycnal separation. The
negative correlation indicates that larger values of Au2-were seen when isopycnals were far
apart (small N2), while smaller velocity differences are found when isopycnals are closely
spaced (large N2).

It is attractive to hypothesize that velocity difference and strain truly are uncorrelated.
The observed correlation could result from the finite resolution of the Doppler sonar.
Velocity differences along isopycnals are unbiased provided isopycnal separation is large
compared to the sonar resolution scale. As isopycnals converge, Au 2 estimates are biased
low.

A model of the biasing effect was created, taking care to account for the non-Gaussian
nature of the Au 2 and N2 fields. The model assumed the actual independence of these
fields. The apparent correlation was then calculated, after modeling the effect of finite
sonar resolution. The agreement between modeled and observed correlation was good,
consistent with the hypothesis that Au 2 and N2 are indeed independent.

Toward a Statistical Model of Richardson Number

The indications of Figure 6 and the correlation studies referred to above suggest a
particularly simple approach to the modeling of Richardson number. In a semi-Lagrangian
frame, consider

Ri(t;Az) - N (t; AZ) (N2) '(t'Az) - (N2)'y(t)

(diiiz) 2(t;Az) (Au2 (t;z)/ AZ2 (t; K 2)) Au2 (t)- /K 2 (

It is convenient to define a scale Richardson number Ri* and to model the

( A U 2 w h 
e r2

normalized Richardson number R = Ri / Ri* =- y(t) / r(t) where
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r(t) MAu2(t)/ (AU2) (12)

Note that the scale Richardson number Ri* is not, in general, equal to the expected value
of the Richardson number (hi). We proceed by recalling that the pdf ofy is given by the

Gamma distributicn (1) with one adjustable constant, r0 = 3, which appears to have the
near universal value of 1.1. The pdf of the velocity difference between two isopycnals has
not been previously investigated. We hypothesize that the individual components of
horizontal (along isopycnal) velocity difference are Gaussian. Thus Au2 represents the
sum of the squares of two Gaussian quantities. Its associated pdf is presumably chi
squared, with two degrees of freedom. At two degrees of freedom the chi squared pdf
takes on exponential form:

P&2;AZ) (13)

P(r) = e-

In Figure 7 the probability density function of horizontal velocity difference squared is
plotted for a variety of mean isopycnal separations. The velocities are normalized by the
mean isopycnal separation to produce a quantity with units of shear, which actually
represents the statistics of squared velocity difference between moving isopycnals. The
pdfs are very nearly exponential in form with a velocity difference (shear) variance that
increases (decreases) with increasing mean separation Az. In contrast to the pdfs of

strain, which are highly skewed at small separation, becoming nearly Gaussian as Az
increases, the pdfs of squared velocity difference are of nearly unchanging form. Only the
scale variance (Au2) changes significantly with mean separation, aiz.

Hypothesizing the independence of Au' and 7, we can form the joint pdf of shear 2 and
strain,

-(U 7 (KY) X1 e7X*Au2/(A_2) (14)
p(Au2,y;Az)= tic )e (".(4

r(C) (AU2)

Here K'= Kc0Az and (Au2) are functions of Az. Identifying the normalized Richardson

number R(A) = Ri Ri = y/ r, we can integrate (14) to obtain

P,< [ (RR l"]R(cR + ) I_ cR-+1J "(
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Similarly, in an Eulerian frame one has

PE(;A=)A) .]'c+) I .1 (16)•~ ~ ~~~C 1C \ / (/A\,z - r+ 1) icR

(IR+ 1)2 [(R+I6

Plots of the pdf of normalized Richardson number are presented in Figure 8. The semi-
Lagrangian pdf is slightly more peaked than the Eulerian at small separations Az. This
difference decreases with increasing mean separation. Again, in contrast to the strain, the

skewness of these pdfs varies only weakly with increasing mean separation.

The initial comparison between the SWAPP observations and the model, while

preliminary, is quite encouraging (Fig. 9).

3. DISCUSSION

To predict statistics of the actual (not normalized) Richardson number, at scales Az, or
depths Z beyond the resolution and reach of the SWAPP instruments, one must know the
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the behavior of (y2) and (AU2) as functions of depth and mean separation. Strain appears

well modeled at scales Az >3 m by the model presented above. The universality of the

single adjustable parameter K0 is open to question. However, the behavior of (Au2) is

even less well known. In this study the estimates are influenced by instrument noise,

which adds to the true variance, and instrument resolution, which detracts from it. Proper

modeling of these effects is required for accurate estimates of Ri.

From vertical profiling measurements, there is a body of experience relating to the

statistics of (Au2), at least in an Eulerian frame. Gargett et al. (1981) were the first to

synthesize a composite shear spectrum from a variety of profiling sensors. They

concluded that the Eulerian shear spectrum has a form generally similar to the model strain

spectrum presented in Figure 5d, being white at vertical wavenumbers less than 0.1 cpm

and of k'- slope at higher wavenumber. The shear spectral level scales as (N2), in contrast

to the strain spectral level, which is independent of Vaisala frequency. The Gargett et aL.

(1981) empirical observation, sustained by more recent research, is that the spectral

transition near 0.1 cpm is not a strong function of (N2). This behavior is inconsistent with

linear dynamics in the WKB approximation. Vertical wavenumbers should vary as (N2)It 2

in a WKB pycnocline.

S. .. .. .. .. .. .. .. .......
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If the Gargett et al. scalings are applied to the present statistical model of Richardson
number, the scale Richardson number Ri* is depth independent. The frequency of
observance of instabilities should thus be independent of depth. This contrasts with the
early internal wave breaking model of Garrett and Munk (1972). It is more consistent
with the later view of Munk (1981).

There are several major concerns with the Richardson number modeling effort presented
here. First and foremost, observations of overturning and instability in the thermocline
typically indicate an overturning scale of a few meters or less. The model developed here
is not supported by the observations at scales less than 3 m. In part this is due to the noise
and resolution limits of the data. However, the Poisson strain model becomes internally
inconsistent at scales smaller than ico', the correlation scale of the strain field. The
relevance of this "finescale" model of Richardson number variability to the occurrence of
oceanic turbulence remains to be demonstrated.
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A related concern is that the Richardson number might not at all be the parameter that is
most sensitive to the occurrence of oceanic turbulence. Orlanski and Bryan (1969)
suggested that a second form of instability, termed convective instability, was responsible
for the bulk of the mixing in the sea. While Munk (1981) argued that both forms of
instability were sensitive to the same aspects of the internal wave spectrum, the space/time
distribution of convective mixing events might be far different than that of the events
resulting from low Richardson number instability.

To investigate this concern, a microstructure probe was mounted on the CTD used in the
SWAPP experiment. The sensor, a Seabird dual electrode microconductivity cell was
capable of resolving overturns on scales as small as 10 cm. In the next phase of the
analysis of this data set, we will attempt to correlate the occurrence of microstructure
signals with the depth-time variation in finescale Richardson number. The degree of
correlation will bear testimony to the relevance of the Richardson number as an indication
of mixing in the thermocline.
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STRUCTURE OF THE UPPER OCEAN VELOCITY
FIELD ON SCALES LARGER THAN 10 KILOMETERS

Eric Firing, Department of Oceanography,
School of Ocean and Earth Science and Technology
University of Hawaii, Honolulu, HI 96822

Absi act

Upper ocean currents, illustrated here by shipboard ADCP data, are a complex
function of both space and time. Vertical shear is strong near the equator and
decreases toward the poles. Particularly strong currents are found near the equator,
in the southern ocean, and on western boundaries. High variability sometimes, but.
not always, coincides with strong mean currents. Inertial oscillations are ubiquitous
and can dominate a dataset. Their spatial structure has not been well observed. An
exploratory attempt to calculate horizontal wavenumber spectra from vertically
averaged shipboard ADCP measurements shows potentially interesting differences
between two sections, one at 35°N, the other near 18'N.

Introduction

Our knowledge of upper ocean currents is sketchy. The broad outlines come from
statistical summaries of ship drift reports accumulated over more than a century.
This global dataset shows the locations and typical speeds of the major surface
currents, their average annual cycle, and a measure of their variability apart from
the annual cycle (e.g., Wyrtki et al., 1976; Richardson and Walsh, 1986; Richardson
and McKee, 1989). The horizontal resolution of this dataset is coarse, typically
1-5°, and it indicates only currents averaged over the hull depth of the ships. There
are many sources of error, such as the effects of wind and waves on the ship.
Temporal resolution is also poor-the dataset is climatological, not synoptic. A
second source of information about upper ocean currents is the hydrographic
dataset, from which the geostrophic component of the currents may be calculated as
a function of depth, not just at the surface (e.g., Toole et al., 1988; Picaut and
Tournier, 1990). When treated climatologically, this dataset has the same coarse
resolution as ship drift data, but individual hydrographic sections can be inspected
for a quasi-synoptic picture of the geostrophic current perpendicular to the ship
track with a horizontal resolution of 0.50 or so. A third source of upper ocean
current measurements is the surface drifter dataset (e.g., Hansen and Paul, 1984). It
gives no information on vertical structure but gives a quasi-Lagrangian picture of
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horizontal and temporal variations of currents at 10-15 m depth. It has recently
been shown that time-averaged horizontal gradients of currents can be resolved on
scales as small as 5 km by suitable averaging of a large drifter data set (Poulain,
1993). A fourth source of current measurements is the moored current meter
dataset (e.g., McPhaden and Taft, 1988; Whitworth et al., 1991). Temporal
resolution is excellent, typically one hour or less. Horizontal resolution can be
arbitrarily fine, but horizontal coverage is limited by the cost and availability of
moorings. An array rarely includes more than 20 or so moorings.

During the last decade, a new source of upper ocean current measurements has been
developed: the shipboard Acoustic Doppler Current Profiler (ADCP). An ADCP is
now standard equipment on most research ships. The typical instrument (model
VM-150 made by RD Instruments) can measure currents relative to the ship at 8-m
depth intervals from about 20 m down to a maximum range of 200-450 m,
depending on ambient noise and the density of acoustic scatterers. Individual
profiles, measured once per second, are averaged into ensembles of a few minutes.
The accuracy of these averages is usually of order 1 cm s-, although biases of order
10 cm s-1 can occur (Chereskin and Harding, 1993; Wilson and Firing, 1992). The
velocity of the ship, measured by differencing position fixes, is added to the current
profile relative to the ship to yield a profile of water velocity relative to the earth.
With present Global Positioning System (GPS) navigation, 95% of fixes are within
100 m of the correct position. Fix errors are correlated over intervals of order 10
minutes. Velocity errors can be reduced to about 2 cm s-1 standard deviation in
each component by differencing fixes 30 minutes apart. With a typical ship speed of
6 m s-', this means the effective horizontal resolution for absolute velocity profiles
is about 10 km.

The purpose of this note is to show something of the character and complexity of
upper ocean currents. We will use ADCP measurements from a few cruises in the
Pacific to show how typical current speeds, horizontal scales, and vertical shears
vary with latitude. We will illustrate, but not solve, the problem of combined
temporal and spatial variability in the shipboard ADCP dataset. Examples of
simple statistical analysis of this dataset will be given. They will show some
features of ocean currents that have not been accessible previously and perhaps help
motivate more extensive and sophisticated statistical analysis of shipboard ADCP
data in the future.

The Central Pacific from 35°N to 60°S

Recent WOCE (World Ocean Circulation Experiment) Hydrographic Program
(WHP) cruises provide high-quality current and hydrographic measurements
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spanning the Pacific. Here we will look at the shipboard ADCP measurements from
the central and southern portions of WHP lines P16, nominally along 150°W, and
P17, nominally along 135*W. The cruises occurred in four legs on two ships: RV
Thomas Washington in June through September 1991 (Talley and Swift, 1992) and
RV Knorr in October and November 1992. Along most of the cruise track, 3-4-hour
CTD stations were occupied at half-degree intervals.

A map of shallow current vectors shows how Ihe character of the current field
changes with latitude (Figure 1). Several distinct regimes can be distinguished. The
region that probably catches the eye first is the band of strong, predominantly zonal
currents within about 100 of the equator. Typical speeds are 50 cm s', and the
widths of the currents are 2-5*. The main currents seen here-the eastward North
Equatorial Countercurrent (NECC), and the westward South Equatorial Current
(SEC) split at the equator by a shallow fraction of the eastward Equatorial
Undercurrent (EUC)-can be identified easily in most cross equatorial sections in
the central or eastern Pacific. Still, as the difference between the sections on 135'W
and 150*W suggests, their variability in time and space is substantial.

Poleward of the equatorial zone, in the tropics through mid latitudes, the typical
currents are relatively weak, perhaps 20 cm s-, and their horizontal scale of
variability is only 1-2' or less. What we see in these regions of Figure 1 is a field of
eddies and other variability superimposed on a weak mean flow. The typical speeds
and the horizontal length scales decrease with increasing distance from the equator
until about 50'S, the northern edge of the Antarctic Circumpolar Current (ACC).
There appears to be an abrupt decrease in eddy energy and scales at about 30°N
and S, separating the ocean into a high-energy extra-equatorial region from 10-300
and a low-energy region from 30-50*. This tentative conclusion needs to be checked
against additional datasets. High eddy energy can also be seen in Figure 1 near the
Hawaiian Islands, as expected (Patzert, 1969).

On 150*W, the ACC apears to extend from 500S to perhaps 62'S as a series of
threads 1-2* wide. To the east, however, we see one or more large eddies or loops in
the current. It appears that the ACC must turn north just east of 150°W and then
loop south at about 140 0W.

To see how the vertical structure of the currents varies with latitude, we turn to
representative contoured sections (Figure 2). Along 35°N from the California coast
to 135°W, most of the major current features are coherent in the vertical but
decrease in amplitude with increasing depth. Typical vertical shears are of order
10-3 s-1. In the equatorial band, by contrast, distinctly different currents are found
at different depths in the upper 400 m. The eastward Northern Subsurface
Countercurrent (NSCC; Tsuchiya, 1975), for example, has a maximum speed of
40 cm s-' at 4.5 0 N, 230 m. Shears in the equatorial zone reach as high as
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Figure 1. Currents averaged from 25 to 75 m on the central and southern portions of WHP lines P16 and
P17, plus transits to and from port. These ADCP measurements were made on the Thomas Washington
from May 31 to October 2, 1991, and on the Knorr from October 6 to November 27, 1992. The Knorr

cruise went from Tahiti to 62.5 0 S and back.
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Figure 2. Upper ocean currents off the California COas (a: meridional component), near the equator (b:
zonal component), and in the Southern Ocean (c: zonal component). Southward and westward flow is
shaded. All contours are at 10-cm r'I intervals. The axe are scaled uniformly in all three panels.
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2 x 102 s-1. In the ACC we find the opposite extreme: shears in the upper 400 m
are typically less than 2 x 10' s'.

Across the Pacific at 10'N

From February through May 1989, the RV Moana Wave crossed the Pacific (Wijffels
et al., 1993). The cruise was run in three legs from west to east, mostly along 9.5 0N,
just north of the boundary between the NECC and the North Equatorial Current
(NEC). CTD casts to the bottom were made every 20 of longitude, with closer
spacing near the boundaries.

Along most of the section, the zonal component of current is westward, part of the
NEC (Figure 3). Eddy-like variability is present everywhere, but is particularly
strong near the western boundary and east of about 130°W. The dominant
horizontal scales of this variability appear to vary from 1-5*. The signature of
tropical instability waves (Hansen and Paul, 1984) is perhaps most evident in the
strong currents near 120°W. These currents are very shallow; most of the energy in
the eastern part of the section is found above 100 m.

The strongest currents of the section are found within 100 of the western boundary.
The southward flow at the Philippine coast is the Mindanao Current, a permanent
western boundary current (Lukas et al., 1991). Fortunately, there are repeated
sections across the Mindanao Current from several measurement programs; we will
look here at data from cruises 3, 4, 5, 6, and 8 of the US/PRC TOGA Program
(Delcroix et al., 1992), from 1987 to 1990. Two of these cruises occurred in boreal
fall, three in boreal spring. The mean meridional velocity component shows the
Mindanao Current and little else; almost all of the region from 129°E to the end of
the section at 141.5°E has a mean current below 10 cm s' (Figure 4). The mean
Mindanao Current is less than 20 wide, has a maximum speed near the coast
exceeding 80 cm s-1, and extends below the 350-m depth range of these
measurements. The pattern of variability differs greatly from the mean. The
standard deviation is minimal, only 5-10 cm s-1, at the coast, where the Mindanao
Current is strongest. The standard deviation then increases eastward with maxima
greater than 30 cm s-1 on the edge of the mean Mindanao Current and beyond the
edge at 129°W. East of there, most of the variability is found in the upper 100 m,
with typical standard deviations from 15-25 cm s-'. Below 100 m the standard
deviations are mostly 5-10 cm s-1. There is no obvious seasonal difference in the
currents in this dataset; variations among sections of the same season are as large as
variations between the two seasons.
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Typhoon-generated Currents

So far, we have interpreted shipboard ADCP measurements as showing primarily
the spatial structure of currents along a section; we have inferred temporal
variability only from cruise-to-cruise differences. Given this mindset, we would look
at Figure 5 and conclude that there was an extroardinary series of eddies south of
Samoa, with a wavelength of 30 and maximum speeds of nearly 100 cm s- 1 . This
conclusion would be wrong.

The Moana Wave left American Samoa for New Zealand on February 9, 1990, just
six days after Typhoon Ofa passed 60 miles west of Savai'i in Western Samoa. On
February 13 the Moana Wave track crossed the path of Ofa eight days before, at
about 19°S. The strong currents in Figure 5 north of 20°S are near-inertial
oscillations excited by Ofa's winds, mainly to the left of Ofa's path where the wind
direction rotated anticyclonically (Lien et al., 1993). The wavenumber vector for
these oscillations is along Ofa's path, roughly perpendicular to the ship track.
Therefore the currents measured from the moving ship can be treated as a time
series. Looking at the time series of currents as a function of depth (Figure 6), we
see that currents were uniform in the vertical above about 80 m, presumably the
mixed layer depth. Substantial energy had propagated below the mixed layer by the
time of these measurements; currents at 200 m were at times as strong as, or
stronger than, those in the mixed layer. Phase propagation was upward, consistent
with downward energy propagation, and there is a corresponding shift to higher
frequencies (blue shift) with increasing depth (Price, 1983).

Apart from its interest as an ocean phenomenon, this instance of unusually strong
inertial oscillations illustrates a general problem in determining the spatial structure
of ocean currents: measurements almost always mix spatial with temporal
variability. There is no measurement system in the ocean that can provide broad
spatial coverage, high spatial resolution in more than one dimension, and good
temporal resolution, all at the same time.

Near-inertial energy can be identified in some shipboard ADCP sections even
without extraordinary forcing such as a typhoon. Wijffels et al. (1993) calculated
frequency spectra of currents from the 10°N Moana Wave section (Figure 3). They
found a prominent near-inertial peak in the clockwise spectrum of the shear between
20 m and 100 m, and concluded that the zonal wavenumber must be small
compared to 21r divided by 650 kin, the distance the ship travelled in one inertial
period. This seems reasonable if the inertial oscillations are excited by wind
fluctuations that also have much longer zonal scales than 650 km. The expected
meridional wavenumber is larger than the zonal wavenumber because of the
variation of inertial frequency with latitude (D'Asaro, 1989). At low latitudes, the
tendency for wind fluctuations to have larger zonal than meridional scales should
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Figure 5. Currents averaged from 25 to 75 m on a Mloana Wave cruise from Samoa to New oand
February 9-26, 1990, immediately following the passage of Typhoon Of a south of Samoa.
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Figure 6. Current vectors (up is northward, to the right is eastward) as a function of time and depth,
along the Moana Wave cruise track near where it crossed the path of Typhoon Ofa in February 1990.

increase the anisotropy in the near-inertial wav'enumber spectrum. This spectrum
has not yet been measured definitively, however.

Horizontal Wavenumber Spectra

Having just demonstrated the dangers of interpreting shipboard ADCP sections in
terms of spatial rather than temporal variability, we will proceed to do just

"that-but gingerly, watching out for temporal signals. Two data sets will be used

here: the WHP P17 cruise of the Thompson (Figure 1); and a cruise of the Moana
Wave from Pohnpei to Hawaii in July 1990 (MW9009; Figure 7). These are chosen
because they include fairly long, nearly zonal sections at different latitudes but
within the mid-gyre current regime, where the mean flow is weaker than the eddies.

From the P17 cruise we will use the transect from the California coast to 135 0W,

nominally along 350N. The large-scale flow is southward, comprising the general
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Figure 7. Currents averaged irom 25 to 75 mn on a Moana WMe cruise (MW9009) from Pohnpei to
Hawaii, July 9-25, 1990.

southward Sverdrup flow of the gyre plus the California Current (Figure 2). The
section is 1230 km long. It was sampled by block-averaging intervals of 0.05° (3.155
kin). Including CTD station time, the ship covered the 130 in 6.1 days. The inertial
period at 35°N, 20.9 hours, thus corresponds to 4bout 20 wavelength along the
track. If the zonal wavelength of the inertial oscillations was much larger than 20,
then the near-inertial spectral peak would appear at 1 cycle per 2' in the
wavenumber spectrum of the currents measured from the ship.

From MW9009 we select the relatively straight transit eastward and slightly
northward from 160N 168 0E to Oahu, 21°N 158°W. For convenience, we can assign
this section a nominal latitude of 180N. The westward flow of the North Equatorial
Current is apparent only on the western half of the section. Like P17, this section
was block-averaged in 0.05° longitude (5 kin) bins. There were no pauses in the

transit, so only eight days were required to cover the 33.80 (about 3570 km) in
longitude. The inertial period ranges from 43.5 hours at 160N to 33.5 hours at 21'N;
a 40-hour period corresponds to about 7' along the track.

Horizontal wavenumber spectra were calculated from the Fourier transforms of
128-point segments, overlapping by 64-points. The segments were tapered with a
paraholic window (Press et al., 1986). The periodograms for each segment were
averaged to yield spectral estimates and normalized so that integrating the
single-sided spectral density gives the total variance in the record. There were four
segments giving six degrees of freedom for the P17 spectral estimates; and 10
segments giving 16 degrees of freedom for MW9009.

To reduce contamination of the spectra by near-inertial oscillations, the velocity
vectors were vertically averaged: from 20-310 m on the P17 section, and from
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20-200 m on MW9009 where the ADCP depth range was less. Frequency spectral
analysis of the P17 section (not shown) indicates that the 20-310 m vertical average
suppresses the near-inertial peak but leaves a semi-diurnal peak. There seems to be
no corresponding peak in the wavenumber domain, however, perhaps because the
ship was stopped on station for more than half the time. In the time-domain spectra
of the MW9009 section there are no clear near-inertial or semidiurnal peaks even in
the shear (200 in relative to 20 in), but there is a peak near the diurnal period in
both the shear and the vertically averaged velocity. This appears to be due to the
eddy field traversed by the ship; if so, the diurnal period is simply a coincidence.

The horizontal wavenumber spectrum at 35°N falls off roughly as k- 2 , apart from
the range 20-40 cptkm (cycles per thousand kilometers) where it. rises above the
eyeball-fit k-2 line by about a factor of 3 (Figure 8). The energy is nearly evenly
divided between zonal and meridional components, but over most of the range
above 10 cptkm there is an excess of clockwise (moving westward along the track)
over counterclockwise energy. Most of this energy is above 20 cptkm, well above the
10 cptkm wavenumber where we might expect the semidiurnal tide to appear in this
dataset (unless it is Doppler-shifted substantially). Hence, the cause and
significance of the excess in clockwise energy are unknown.

The wavenumber spectrum at 18'N is less energetic than the 35°N spectrum above
20 cptkm, and more energetic below 10 cptkm. Above 25 cptkm the spectral slope
is about k- 2 , but at lower frequencies there is no clear single slope. There is no
disparity between the rotary components at high wavenumbers. Below 10 cptkm,
meridional energy exceeds zonal energy, and clockwise (eastward along the track)
energy exceeds counterclockwise energy.

The analysis given here is intended as no more than a first exploration of the
possibility of studying the horizontal wavenumber structure of upper ocean currents
with shipboard ADCP data. It shows that in regions of the ocean away from strong
mean currents, there are indeed differences in the wavenumber spectra. We suspect
that part of the difference shown here between sections at 35 0N and 18°N reflects
the difference in Rossby radius of deformation: the eddy energy is concentrated at
wavelengths near the Rossby radius, which is larger at lower latitudes. Much of the
difference, however, is found at shorter wavelengths, and this remains to be
explained.

Discussion

The primary theme of this note has been the spatial variability of ocean currents.
Vertical shear in the upper few hundred meters varies from almost nil at 60°S to
0.03 s-1 near the equator. Large-scale mean currents vary from near 1 m s-' at the
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Figure 8. Horizontal wavenumber spectra of currents from a section along 35°N (WHP P17; heavy lines),
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Mindanao coast to less than 0.1 in s-' 400 km offshore. Eddies are ubiquitous, but
their typical amplitudes and length scales vary from place to place. Away from
strong currents, both amplitude and length scale tend to vary inversely with
latitude.

The secondary theme has been the complexity of temporal variability, and in
particular the near-inertial oscillations and internal tides. We have shown
near-inertial oscillations of nearly 1 m s-', albeit caused by extraordinary forcing: a
typhoon. We have noted the potential danger in looking for an eddy horizontal
wavenumber spectrum in shipboard current measurements, inevitably containing
inertial and internal waves in addition to the eddies. The danger is reduced but not
eliminated by vertical averaging.

Statistical analysis of upper ocean velocity measurements is clearly in its infancy.
Even the simplest sorts of analysis-such as calculation of the mean and standard
deviation of currents along a single section-have been done only in a very few
places and with very few measurements. To my knowledge there has been no
comprehensive attempt to characterize the spatial distribution of vertical shear
variance. Horizontal wavenumber analysis of current measurements h, been
attempted rarely. There has been no systematic attempt to extract statistical
information about eddies and the internal wave field from the rapidly growing
shipboard ADCP data set. The size and quality of this data set are rapidly
approaching the point where extensive statistical analysis will be feasible. I expect
it will be fruitful as well, shedding light on the small and mesoscale phenomena that
until recently have been almost impossible to observe in detail.
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ABSTRACT

Because of uncertainties in the marine geoid and orbit height, most applications of
altimetric data have focused on mapping the sea level variance statistic. These stud-
ies have been very successful at defining the geographical distribution of eddy variabil-
ity and have highlighted the close relationship between transient eddies, the intensity of
the mean flow and the bathymetry. Altimeter data have also been used to estimate sur-
face geostrophic velocities and map the variance of geostrophic velocity (or, equivalently,
the geostrophic Reynolds stresses). These studies have demonstrated the importance of
the transport of horizontal momentum into the mean flow by transient eddies. Other ob-
vious applications of altimeter data include mapping the time evolution of the sea level
field for studies of wind and buoyancy forced ocean circulation and descriptive studies of
mesoscale processes such as meandering and ring formation. Such applications are lim-
ited by a number of difficult technical challenges, mostly related to uncertainties about
what space and time scales can be resolved by the complex space-time sampling charac-
teristics of satellite data. A method is presented here for identifying aliasing patterns in
an arbitrary sample design and for quantifying the resolution capability of the data set.
Although the discussion emphasizes altimeter data, the method is applicable to any irreg-
ularly sampled data set. The maximum resolution capability of the GEOSAT orbit con-
figuration (neglecting measurement errors and data dropouts) is found to be about 30 in
latitude and longitude by 30 days.

1. INTRODUCTION

The TOPEX altimeter launched in August 1992 is the fifth in a series of altimeter
satellites that have measured the global sea surface topography for studies of ocean circu-
lation. The vast majority of applications of altimeter data have focused on the statistics
of mesoscale variability. As discussed in section 2, this is because the effects of uncertain-
ties in the orbit height and the marine geoid can be greatly mitigated if the interest is
restricted to sea level variance statistics. In recent years, there has been an increasing
interest in using altimeter data to map the time evolution of sea level in order to inves-
tigate the detailed spatial and temporal structure of sea level variations on a wide range
of scales and relate them to wind and buoyancy forcing. Although examples can be cited
from the literature of attempts to construct quasi-synoptic maps of mesoscale eddy fields
with -50 km spatial resolution from altimeter data, it should be obvious that the infor-
mation content of altimeter data alone is not sufficient to do this; because of the asyn-
optic sampling and relatively coarse spacing (100-300 kin) of the satellite ground tracks,
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there are lower limits to the space and time scales that can be resolved by the data. To
date, the choice of scales mapped has been rather ad hoc, with few attempts to assess the
accuracy of the mapped fields.

The objective of this study is to present a technique for quantifying the space and
time scales that can be resolved by an irregularly sampled data set. Although the partic-
ular interest here is to determine the resolution capability of altimeter data, the method
is equally applicable to any irregularly sampled data set. The discussion in this paper is
limited to the GEOSAT altimeter, which is the altimeter data set that has received the
most attention because of its long (compared with other altimeter missions) 2-year dura-
tion.

It must be conceded at the outset that, because of asynoptic sampling and incom-
plete spatial coverage, some degree of smoothing is required to construct sea level maps
from altimeter data. The technique presented here offers a method for deducing the mini-
mum smoothing necessary to avoid undesirable error characteristics in the mapped fields.
For multidimensional data sets such as altimeter data, the best choice of smoothing is
complicated by the fact that there is a resolution tradeoff; high resolution in one of the
dimensions can be achieved by reducing the resolution in the other dimensions. For ex-
ample, high resolution in time can be obtained by sacrificing spatial resolution. Similarly,
high resolution in space can be obtained at the cost of low temporal resolution. Alterna-
tively, high spatial resolution in one dimension can be achieved at the cost of low spatial
resolution in the other dimension. The best choice of the tradeoff between spatial and
temporal resolution will depend on the intended application.

A brief summary of previous oceanographic applications of altimeter data is given in
section 2. The section concludes with a statement of the need to quantify the resolution
capability of altimeter data in order to construct meaningful maps of the time evolution
of sea level fields. A method for quantifying the inherent wavenumber-frequency filtering
characteristics of an irregularly sampled data set is given in section 3. The filter transfer
function depends on the particular sampling characteristics of the data set and on the
choice of smoothing parameters used to construct the maps. The utility of the transfer
function is demonstrated by application to 1-dimensional examples and to the GEOSAT
data. An expression for the errors of the smoothed fields is derived in section 4 in terms
of the transfer function of the data set and the spectral characteristics of the field. The
transfer function and error formalisms are applied in section 5 to determine the resolution
capability of a 1-dimensional example and of the actual GEOSAT data.

2. SUMMARY OF PAST ALTIMETER STUDIES

2.1. The Measurement Technique

The measurement of sea surface topography by satellite altimetry is summarized
schematically in Figure 1. Although the altimeter measurement of range h is straight-
forward in principle, it is very complex in practice, involving more than 50 computer al-
gorithms to correct for instrumental effects, atmospheric refraction and biases introduced
by the interaction between the electromagnetic radar pulse and the air-sea interface. It
is remarkable that the accuracy of the range estimates after applying these corrections is
better than one part in 107. The range measurements alone are not sufficient for oceano-



SATELLITE ALTIMETRY 57

Satellite.. • Orbit

11re111011 CoIScti

h External Gepyio Corrections

- W
Air-sec m 1 0t "ight

tAonterce RCrrections

Figure 1. Schematic representation of altimeter measurements.

graphic applications; there are several contributions to the range measurements that are

not part of the oceanographic signal of interest. It is therefore necessary to apply several
additional external geophysical corrections to obtain the dynamic sea surface topography
hd associated with geostrophic ocean circulation. A detailed discussion of the range and

external corrections is beyond the scope of this study; the interested reader is referred to
Chelton (1988) and Chelton et al. (1989).

By far the largest source of error in altimeter estimates of sea surface topography is
the correction for the geoid height h9 . The dynamic range of tne geoid is almost 200 m

globally, which is about two orders of magnitude larger than the global dynamic range of
the oceanographic sea surface topography. Uncertainties in the geoid height are presently
about 30 cm, which is comparable to the magnitude of the oceanographic signal. The
geoid problem can be essentiaily eliminated if interest is restricted to studies of time-
varying sea surface topography. Because temporal variations in the earth's gravity field

are negligible over the duration of an altimeter mission, the geoid signal at each location
along an exactly repeating ground track can be estimated as the time average of sea level
over all repeat orbits by the so-called collinear analysis method (see, e.g., Appendix A of
Cheney et al., 1983; sections 4.2 and 4.3d of Cheton et al., 1990). Regrettably, this time

average also includes the time-invariant contribution to sea level from the mean ocean
circulation but this signal must be sacrificed in order to eliminate the geoid problem. Ig-
noring the small errors introduced by the 4-1 km lateral variations of the repeating orbits,
the geoid and mean ocean circulation contributions can be removed andsth ttime-varying
sea surface topography can be investigated from the residual sea level signal.



58 CHELTON AND SCHLAX

The second largest source of error in altimeter data is the correction for the satellite
orbit height H. Until recently, uncertainties in the orbit height have been about 50 cm.
Preliminary analyses of TOPEX data have shown that advances in precision orbit deter-
mination have reduced the orbit errors to less than 10 cm. As impressive as this accu-
racy is, there is still a need to estimate and remove these residual orbit errors from the
altimeter data for most oceanographic studies. The spectral characteristics of orbit er-
rors are dominated by variability at 1 cycle/rev (Wagner, 1989). If the interest is only in
mesoscale variability (wavelengths shorter than about 1000 km), the very long wavelength
orbit errors can be approximated and removed from the data by least squares polynomial
fits over data arcs of 2000-3000 km (Zlotnicki et al., 1989; Tai, 1989; 1991). For studies
of sea level variability on larger scales, the orbit errors are more appropriately modeled as
sinusoids with a frequency of I cycle/rev (Chelton and Schlax, 1993).

The overall accuracy of altimeter estimates of the time-varying component of sea sur-
face topography after applying all of the corrections and removing the geoid and orbit
errors is probably 6-8 cm for the GEOSAT altimeter, although this is difficult to quan-
tify. Because of significant improvements in the atmospheric refraction corrections and
the orbit height estimates, the overall accuracy of the TOPEX data is likely to be smaller
by about a factor of two.

While the estimation of sea level by satellite altimetry is much more technical than
that by tide gauges, there are a number of problems that altimeter and tide gauge data
share in common. All of the external geophysical corrections that must be applied to al-
timeter data must also be applied to tide gauge data. The primary distinction between
the two methods of sea level estimation is that most of the unwanted contributions to the
sea level measurements are easier to remove from tide gauge data. For example, nearly
all of the tidal signal can be removed by low-pass filtering the tide gauge data, which are
typically sampled at hourly intervals. Because the altimetric estimates of sea level at a
given location are sampled at widely spaced intervals of 3-35 days (depending on the
satellite orbital configuration), low-pass filtering is not possible. The tidal signal must
therefore be removed from altimeter data on the basis of model estimates of the various
tidal constituents. The present global accuracy of tidal models is believed to be 5-10 cm
rms in the open ocean (Ray, 1993). The correction for atmospheric pressure loading (the
"inverse-barometer effect") is also easier for tide gauge data since measurements of atmo-
spheric pressure can usually be obtained from a nearby barometer. Here again, altime-
ter data require model estimates of sea level pressure since the altimeter observations are
globally distributed but atmospheric pressure data are available only at discrete locations.

The correction for geoid contributions to the sea level signal are equally difficult for
altimeter data and tide gauge data. There are few cases where tide gauges have been
geodetically levelled to a common reference. Although levelling can now be done using
astronomical techniques, it is a costly procedure and not likely to be done in the near fu-
ture for the global tide gauge network. As with altimeter data, the geoid problem for tide
gauge data can be avoided if interest is restricted to studies of the time variability of sea
level; the time-averaged sea level can be removed from each tide gauge record.

Even the orbit error problem of altimetry has an analog in tide gauge data. The level
of a tide gauge relative to a fixed reference can vary with time. Although there are ex-
amples of abrupt changes in the tide gauge datum level from catastrophic events such as
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earthquakes, the sudden collapse of a pier, or relocation of the gauge, most of the vertical
motion of the gauge is associated with very slow crustal uplift or subsidence. These sec-
ular signals are easily identified and removed from tide gauge data by simple statistical
techniques.

2.2. Mean Sea Surface Topography

Determining the surface geostrophic general circulation of the ocean from the mean
dynamic topography of the sea surface has long been an important objective of satellite
altimetry (Wunsch and Gaposchkin, 1980). When combined with hydrographic data,
knowledge of the absolute sea surface topography obtained from altimetry would solve
the reference level problem of the dynamic method for computing geostrophic velocity
from hydrographic data. This is one of the primary stated goals of the TOPEX mission.
It is also the most challenging goal of the mission because it places the most stringent
demands on the accuracy requirements of each of the many measurement components
needed to determine the dynamic sea surface topography.

As noted in section 2.1, the two largest sources of error in altimeter data are un-
certainties in the geoid height h. and the orbit height H, both of which, until recently,
have been known only to an accuracy of about 50 cm. This is comparable to the ampli-
tude of the dynamic topography signal of interest. Orbit height errors have decreased to
about 10 cm for the TOPEX data that are beginning to become available. Geoid errors
have similarly decreased by constructing a global geoid from combined terrestrial gravity
measurements and satellite tracking data using the method described by Rapp and Pavlis
(1990) (see Rapp et al., 1991). The result of this analysis is a global model for the geoid
height, expressed as an expansion of the spherical harmonic functions, with an estimated
rms error of about 30 cm (Rapp, 1992). The geoid accuracy is not likely to improve much
beyond this without a low-altitude dedicated gravity-mapping satellite mission. With
present technology, it is possible to map the geoid with 100 km spatial resolution to an
rms accuracy of about 3 cm by satellite. Several such missions have been proposed in-
ternationally over the past decade but none have yet reached approval for a new start.
Until such a geoid model becomes available,, studies of the general ocean circulation will
be limited to the very large scales that are known accurately in presently available gravity
fields.

The approach that has been used most commonly to estimate the mean dynamic
topography from altimeter data first subtracts the range measurements h from the esti-
mated satellite orbit heights H (see Figure 1) to obtain an estimate of the total sea sur-
face height at each measurement location. These sea surface height estimates are then
adjusted to mitigate the effects of time-dependent orbit errors by a least squares proce-
dure that approximates the predominantly 1 cycle/rev orbit errors as low-order polyno-
mials or sinusoids as discussed in section 2.1. The adjusted sea surface heights are then
interpolated to a regular grid along the satellite ground track and a gridded mean sea sur-
face is computed as the arithmetic mean of all repeat estimates of the adjusted sea sur-
face height at each grid location. The mean sea surface constructed in this way includes
the geoid height, the mean dynamic topography, the geographically correlated orbit error
(defined here to be the time-invariant component of orbit error that is the same for each
repeat sample of a given ground track) and any time-invariant measurement errors.
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Because the geoid is expressed as a global spherical harmonic expansion, the method
generally used to estimate the mean dynamic topography has been to expand the ad-
justed altimetric mean sea surface as a spherical harmonic expansion of the same low de-
gree and order to which the geoid is known accurately. The geoid height h, expanded to
this low degree and order is then subtracted from this low-pass filtered mean sea surface.
The accuracy of the resulting estimate of the low-order spherical harmonic expansion of
the mean dynamic topography hd depends not only on the accuracy of the geoid estimate
at these large scales but also on the magnitudes of the geographically correlated orbit er-
rors and time-invariant measurement errors that are included in the sea surface height
estimates.

An example of the application of this straightforward approach by Tai (1988) is
shown in Figure 2a based on three months of SEASAT data expanded to degree and
order 8. For comparison, the mean sea surface dynamic topography relative to 2250 db
computed by Levitus (1982) from 80 years of historical hydrographic data is shown to the
same degree and order in Figure 2b. It is immediately apparent from the hydrographic
data that this low degree and order expansion, which corresponds to wavelengths longer
than about 5000 km, provides only a crude representation of the true dynamic topogra-
phy. Even the major gyre structures are only schematically present at these long wave-
lengths. Higher order terms of the spherical harmonic expansion are necessary to resolve
the strong dynamic height gradients associated with intense currents such as the Gulf
Stream.
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Figure 2. Spherical harmonic expansions to degree and order S of a) the mean sea level computed from 3
months of SEASAT data with the GEM-Tl geoid removed; and b) the Levitus (1982) surface dynamic
height field (from Tai, 1988.)
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It can also be seen from Figure 2 that there are large discrepancies between the al-
timetric and hydrographic estimates of the mean dynamic topography. Most notable is
the region of high sea level in the altimeter data centered at about 15°S, 250*E in the
eastern Pacific. There is also a region of low sea level in the altimeter data from the In-
dian Ocean. Although the differences in some regions such as the poorly sampled areas
of the southern hemisphere may be attributable to errors in the hydrographic data, it
is more likely that the large amplitude features in the eastern Pacific and Indian Ocean
arise primarily from geoid errors and geographically correlated orbit errors. Tai (1988)
argues that the accuracy of geoid models has improved to a point where orbit errors are
now the dominant source of error in altimeter estimates of the mean dynamic topogra-
phy. Large differences between the mean sea surface height estimates constructed sepa-
rately from ascending and descending ground tracks at the crossover points attest to the
presence of large geographically correlated orbit errors in the eastern Pacific and Indian
Ocean. These orbit errors can be attributed to the poor ground-based tracking coverage
along the ground tracks that pass over these regions.

Nerem et al. (1990) and others have attempted to reduce the effects of geoid and
orbit errors on altimetric estimates of the dynamic topography (and at the same time
improve estimates of the geoid height) by simultaneously estimating the mean dynamic
topography, the geoid height and the orbit errors using a least squares inversion proce-
dure first suggested by Wagner (1986). Compared with the earlier estimate by Tai (1988)
shown in Figure 2a, the joint-solution estimate of mean dynamic topography to degree
and order 10, computed from 51 days of GEOSAT data, is in closer agreement with the
low-pass filtered dynamic topography from hydrographic data. The primary reason for
the improvements in the GEOSAT-based mean dynamic topography when compared with
the earlier estimates from SEASAT data is likely *he explicit inclusion of orbit errors in
the joint solution. Nonetheless, there are still large differences between the altimetric and
hydrographic dynamic topographies. For example, the Atlantic Ocean gyre structure is
much different in the two data sets and there are very large discrepancies in the Indian
Ocean. In the Pacific Ocean, the gyre centers are displaced to the east in the altimetric
data.

With an unprecedented orbit accuracy of better than 10 cm rms, TOPEX data have
introduced a new era in absolute sea level determination by satellite altimetry. The dra-
matic improvement in the accuracy of the TOPEX orbits compared with previous altime-
ter satellites is primarily attributable to more complete ground-based tracking coverage
and improved orbit modeling because of the reduced drag and gravitational effects on
the satellite at the higher 1300 km TOPEX orbit altitude (compared with the 800 km
SEASAT and CEOSAT orbit altitudes). Orbit errors are no longer the largest source
of error in the mean dynamic topography constructed from altimeter data; errors in the
geoid height are now the primary limitation. Because the geoid is still known most accu-
rately at the largest scales, accurate altimetric estimates of the mean dynamic topography
will continue to be limited to low degree and order terms in a spherical harmonic expan-
sion. The challenge facing oceanographers is to develop data assimilation techniques that
are able to utilize this large-scale information to constrain ocean models.
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2.3. Variance Statistics

The geoid and geographically correlated orbit errors that limit the accuracy of ab-
solute sea level determination by satellite altimetry are of relatively little concern for
studies of sea level variability. As discussed previously, the tCme-invariant geoid and ge-
ographically correlated orbit errors (as well as any time-invariant measurement errors) are
included in the mean sea level computed from repeat-track altimeter data. This mean sea
level is removed for altimetric studies of sea level variability. After removing the mean
sea level or as part of the mean sea level estimation (van Gysen et al., 1992; Chelton
and Schlax, 1993), the time-dependent orbit errors are estimated and removed by one of
the least squares techniques outlined in section 2.1. For exact repeat orbits, it is then a
straightforward procedure to compute variance statistics from the residual sea level es-
timates; the sea level variance is computed as the arithmetic average of the squared sea
level residuals at each grid location.

Global sea level variability has been calculated from 12 months of exact-repeat
GEOSAT data by Zlotnicki et al. (1989) (Figure 3a). All of the major ocean currents are
clearly delineated from the unique global perspective afforded by altimeter data. The re-
gions of highest mesoscale sea level variability are coincident with the axes of the Gulf
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Stream, the Kuroshio and the Antarctic Circumpolar Current. Sea level variability is also
high in the southwest Atlantic at the confluence of the Brazil and Malvinas Currents, and
in the East Australia Current. High mesoscale variability in these regions is not unex-
pected in view of the fact that they are all known to be regions of hydrodynamically un-
stable flow. The sea level variations are associated with transient eddies and meanders in
the flow.

AM shown by Zlotnicki et al. (1989), the amplitude of mesoscale variability deduced
from altimeter data is sensitive to the method used to estimate the time-dependent orbit
errors. The Zlotnicki et al. (1989) map of rms sea level variability in Figure 3a was ob-
tained using second-order pulynomial orbit error corrections over 2500 km data arcs. For
comparison, the rms sea level variability derived from two years of GEOSAT data based
on the long-arc (multiple orbital revolutions) sinusoidal orbit error corrections of Chel-
ton and Schlax (1993) is shown in Figure 3b. The patterns of sea level variability are the
same in both figures. However, the rms variability is larger nearly everywhere by a few
centimeters in the long-arc data. While some of this additional energy is real ocean vari-
ability that has been removed by the short-arc polynomial orbit error approximations,
some of it is likely attributable to the larger residual orbit errors and other measurement
errors in the long-arc data discussed by Zlotnicki et al. (1989). More accurate orbit esti-
mates and geophysical corrections such as those now available for TOPEX data will en-
able a partitioning of this variability between ocean signal and measurement errors.

Although sea level variance studies have been very useful for mapping the geograph-
ical distribution of mesoscale energy, they yield little insight into the detailed statisti-
cal characteristics of eddy variability. The spatial scales of mesoscale variability can be
investigated from the wavenumber distribution of sea level variance. This is easily de-
termined from 1-dimensional wavenumber spectra of altimeter data along the satellite
ground track. Altimetry is the only observational technique that can provide such in-
formation because of the difficulty in obtaining synoptic profiles of sea level from in situ
measurements.

Le Traon et al. (1990) analyzed the 2-year GEOSAT data set and computed
wavenumber spectra of sea level variability for nineteen areas in the North Atlantic. The
GEOSAT measurement errors of 3-5 cm allow the resolution of scales as shcrt as about
50 km. The spectra for six regions along 35 0N are shown in Figure 4. In the energetic
western portion of the North Atlantic, the sea level wavenumber spectra are relatively flat
at low wavenumbers with a broad peak centered at wavelengths of approximately twice
the baroclinic Rossby radius of deformation. These peak wavelengths decrease with in-
creasing latitude; peak wavelengths are about 500 km at 25°N, 400 km at 35 0N, 300 km

at 45 0N and 200 km at 55 0N. These values are consistent with the baroclinic Rossby
radii estimated from historical hydrograijýic data by Emery et al. (1984). At wavelengths
shorter than the Rossby radii, the spectra drop off as approximately k 4 , compared with
the k- 5 dependence expected from quasi-geostrophic turbulence theory (Charney, 1971).
The weaker slopes in the GEOSAT data are not understood at present.

East of the Mid-Atlantic Ridge where eddy variability is much weaker, the wavenum-
ber dependence of the sea level spectra ranged from about k- 3 to k- 1 . In contrast to the
western region, the spectra in the eastern basin generally did not flatten at wavelengths
shorter than the baroclinic Rossby radius of deformation. This implies that the energy
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source of turbulent variability in the eastern basin is at much longer wavelengths (smaller
wavenumbers) than in the energetic western region. Le Traon et al. (1990) suggest that
this may be an indication that the eddy variability in these regions of low energy is gener-
ated by fluctuating winds, as theorized by Frankignoul and Miller (1979) and Muller and
Frankignoul (1981). The wind forcing occnrs on much larger scales (order 1000 kin) than
the forcing by baroclinic instabilities, resulting in a downscale enstrophy cascade from
smaller wavenumbers.

The energetics of eddy variability can be investigated from the geographical distri-
bution of eddy kinetic energy. As described by M~nard (1983), this is easily estimated
from cross-track geostrophic velocities derived from along-track sea level slopes computed
from altimeter data if the eddy variability is assumed to be isotropic. The seasonal vari-
ability of eddy kinetic energy estimated in this manner has been investigated globally
(with emphasis on the Gulf Stream, Kuroshio and Antarctic Circumpolar Current re-
gions) from two years of GEOSAT data by Shum et al. (1990). From 3-month average
estimates of eddy kinetic energy, they find a clear meridional migration of the position of
the Gulf Stream extension east of 60*W. The location of maximum eddy kinetic energy
shifts northward from the mean location by several degrees of latitude during the sum-
mer/autumn and then southward of the mean location by about the same distance during
the winter/spring. The magnitudes of the eddy kinetic energy in the Gulf Stream region
vary over the two-year record, but not with any clear seasonal cycle. The maps for the
Kuroshio region are more difficult to interpret, perhaps because of the larger number of
GEOSAT data dropouts in this region. Temporal variations of eddy kinetic energy are
small throughout the Antarctic Circumpolar Current region over the 2-year GEOSAT
data set.

An important limitation of altimetric studies of eddy kinetic energy from along-track
sea level slopes as summarized above is the need to assume isotropic variability. Drifter
data support this assumption in regions of low to moderate eddy energy. However, the
eddy variability in energetic regions such as western boundary currents and the Antarc-
tic Circumpolar Current is distinctly anisotropic (e.g., Richardson, 1983; Daniault and
M6nard, 1985; Johnson, 1989) Morrow et al. (1992) developed a technique for determin-
ing the vector surface geostrophic velocity at the intersections of ascending and descend-
ing ground tracks. The method involves calculating cross-track velocity components along
each of the ground tracks at the crossover locations. The two non-orthogonal components
are then converted to orthogonal (north and east) geostrophic velocity components by a
simple geometrical transformation first suggested by Parke et al. (1987). The resulting
time series of north and east velocity components can then be used to calculate the vari-
ances and covariance of the two velocity components, from which velocity variance ellipses
that define the principal axes of variability can be derived. A current ellipse with large
eccentricity represents highly anisotropic variability with most of the velocity fluctuations
aligned parallel to the major axis of the ellipse. Correspondingly, a circular variance el-
lipse represents isotropic variability with no preferred direction of the velocity fluctua-
tions. The dense distribution of altimeter crossover locations provides a much higher spa-
tial resolution of eddy variability than can practically be obtained from drifter data.

Application of the technique to two years of GEOSAT data in the Southern Ocean
reveals energetic, anisotropic surface geostrophic velocity variability in the vicinity of all
of the major currents (Figure 5). The orientations of the velocity variance ellipses rela-
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tive to the axis of the mean flow have important implications for eddy transport of hor-
izontal momentum; where the ellipse axes are aligned perpendicular and parallel to the
mean flow, there is no cross-stream transfer of along-stream momentum. Eddy momen-
tum fluxes in the Southern Ocean have been quantified by Morrow et al. (1992; 1993) by
estimating the gradients of the Reynolds stresses from the variances and covariances of
surface geostrophic velocity components. They found a convergence of alongstream mo-
mentum in streamwise integrated Reynolds stresses along the mean axis of the Agulhas
Return Current. This is an indication that eddy variability in this region tends to accel-
erate the mean flow, consistent with recent models of the Antarctic Circumpolar Current
(Tregieur and McWilliams, 1990; Wolff et al., 1991). The GEOSAT data reveal a surpris-
ingly complex geographical distribution of this Reynolds stress convergence.

The broad range of applications summarized in this section illustrate the significant
contributions that altimetric studies of variance statistics for sea level, eddy kinetic en-
ergy and surface geostrophic velocity have made toward understanding the dynamics of
mesoscale eddy variability. This information cannot be obtained by in situ observational
techniques on the scales resolvable by altimeter data. To date, because of the short du-
ration of the SEASAT data set, GEOSAT data have been most useful for these studies.
It is 'n unfortunate fact that the non-scientific primary objective of the mission (high-
resolution mapping of marine geoid for defense purposes) resulted in a number of inherent
weaknesses in the GEOSAT mission design. Most importantly, there was no onboard mi-
crowave radiometer for the wet tropospheric correction, no active attitude control system
(resulting in frequent data dropouts), estimates of the ionospheric range correction were
inaccurate during the high solar activity that coincided with the period of the GEOSAT
mission, and the geographical distribution of unclassified ground-based tracking stations
for orbit determination was very sparse. Despite these shortcomings, GEOSAT data have
provided very valuable experience with altimeter data, while at the same time yielding
important new information about ocean variability. It must be kept in mind, however,
that all of the results obtained to date are compromised to an unknown degree by mea-
surement errors with a wide range of space and time scales (see, for example, Jourdan et
al., 1990, and Figure 9 of Le Traon et al., 1990). Much improved estimates of mesoscale
variability will be possible from the more accurate TOPEX data that are now becoming
available.

2.4. Mapped Fields of Sea level Variability

The examples in section 2.3 demonstrate that it is relatively straightforward to com-
pute variance statistics from altimeter data. For many applications, the statistics of the

variability are not sufficient. For example, it is of interest to map the spatial and tem-
poral evolution of the sea level field for studies of the dynamics of wind and buoyancy
forced ocean circulation. This mapping poses a much more difficult problem than calcu-
lating variance statistics. As shown in Figure 6a, the GEOSAT ground tracks map out
a diamond-shaped grid on the sea surface. The dimensions of the diamonds at middle
latitudes are about 1.50 of longitude by 30 of latitude for the GEOSAT 17-day repeat
orbit. These dimensions increase for shorter orbit repeat periods; the dimensions of the
diamonds for the TOPEX 10-day repeat orbit, for example, are about 2.70 of longitude
by 5.5* of latitude at middle latitudes. Clearly, the spatial structure of mesoscale vari-
ability cannot be resolved on all scales by altimeter sampling grids. Features with spatial
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dimensions shorter than roughly a few hundred kilometers are aliased by the ground track
pattern.

The aliasing problem is made even more complicated by the asynoptic sampling of
the altimeter ground track pattern. As shown in Figure 6b, there is a 3-day subcycle in
the GEOSAT sample grid; the ground track mapped out in a 3-day period consists of
a coarse resolution diamond-shaped grid with dimensions of approximately 10° of lon-
gitude by 20° of latitude at middle latitudes. In each successive 3-day period, the same
diamond-shaped pattern is mapped out, but shifted eastward by about 1.50 of longitude
each period. The complete GEOSAT ground track pattern in Figure 6a is thus filled in
over the 17-day repeat period. This systematic space-time coupling of the sampling char-
acteristics introduces the possibility of the aliasing of propagating sea level features into
the mean field as discussed in section 3.4.

A 3-day subcycle is a common characteristic of all exact-repeat altimeter orbit con-
figurations. However, the direction and distance of the 3-day shifts of the coarse resolu-
tion grid depend on the details of the orbit configuration. For example, the 3-day sub-
cycle of the TOPEX orbit also shifts eastward, but by about 2.70 of longitude because
of the shorter 10-day repeat. In contrast, the 3-day subcycle of the ERS-1 35-day repeat
orbit shifts westward by about 1.50 of longitude.
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The effects of variability not resolved by the irregular sampling pattern can be mit-
igated by some degree of spatial and temporal smoothing, As described in section 2.3,
removal of the geoid height and orbit errors is much easier for exact-repeat data than for
a nonrepeating orbit configuration such as the first two months of the SEASAT mission
and the GEOSAT 18-month Geodetic Mission. Mapping fields of sea level variability is
therefore greatly simplified from exact-repeat altimeter data using the collinear analysis
method described in section 2.1. In addition, the availability of two years of exact 17-
repeat GEOSAT data (with a third year of partial coverage) has provided a long enough
record of altimeter data to begin to investigate temporal variability of sea level with some
(albeit still rather limited) statistical reliability. As a consequence of these two factors,
there has been a great proliferation of altimetric studies of large-scale sea level variability.

Numerous studies have documented Kelvin and Rossby wave propagation in the
tropical Pacific from collinear analyses of GEOSAT exact-repeat data. As these waves are
characterized by much longer zonal than meridional scales, these studies have generally
smoothed the data to a resolution of 8-10* of longitude by 1-3° of latitude by one month.
An example from Delcroix et al. (1991) is shown in Figure 7. Data from the first year
of the GEOSAT exact-repeat mission (November 1986-November 1987) were smoothed
300 km along track and then gridded and smoothed into approximate 100 x 20 x 1 month
averages. An eastward propagating downwelling equatorial Kelvin wave characterized
by a 15 cm positive sea level anomaly was observed beginning in December 1986, coin-
cident with a strong westerly wind anomaly west of the dateline. Subsequently, an up-
welling equatorial Kelvin wave with 10 cm negative sea level anomaly was generated in
January-February 1987, coincident with an easterly wind stress anomaly. After arrival of
this second Kelvin wave at the eastern boundary of the tropical Pacific in March 1987, a
westward propagating baroclinic Rossby wave is evident as equatorially symmetric 12 cm
negative sea level anomalies centered at 41N and 4VS. The surprising result that the ear-
lier downwelling Kelvin wave did not reflect as a Rossby wave is explained by the authors
from a model simulation driven by observed winds. They show that the local response to
wind forcing in the eastern part of the basin tends to weaken the reflected downwelling
Rossby wave, but enhances the reflected upwelling Rossby wave. Owing to the short 1-
year record length, the authors are not able to determine whether the observed Kelvin
and Rossby waves are associated with the 1986-1987 El Niiio or are part of the normal
seasonal cycle.

Outside of the tropics, the scales of sea level variability are dominated by eddy dy-
namics, rather than the wave-like motions in the equatorial waveguide (Robinson, 1983).
The appropriate spatial smoothing is thus less well defined than in the tropics. A wide
variety of smoothing scales have been adopted in the literature, all of which are rather ad
hoc. In some regions, the spatial scales of the eddies are large enough to be resolved by
altimeter data. For example, the average diameter of eddies formed by pinching off of the
Agulhas Retroflection is more than 300 km (Lutjeharms and Ballegooyen, 1988). Gordon
and Haxby (1990) have tracked seven Agulhas eddies from one year of GEOSAT data.
After detachment, these eddies drift northwestward into the South Atlantic at 5-8 cm/s
(Figure 8). From the distribution of these large eddies, they estimate that about five ed-
dies per year are shed from the retroflection and drift into the Atlantic. These eddies are
important to the mass balance of the world oceans; Gordon and Haxby (1990) estimate
that they carry as much as 10-15x 10 m3/s of Indian Ocean water into the Atlantic. In
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addition, Agulhas eddies support a large heat flux from the ocean to the atmosphere as
the high sea surface temperatures of these features quickly cool by evaporation.

More generally, the spatial scales of mesoscale eddies are of order 100 km, which is
too small to be resolved by altimeter sampling grids. An eddy that is detected as a local-
ized bump in several successive profiles of sea level along a repeating ground track even-
tually drifts away from the ground track and disappears into a diamond-shaped region
bounded by ascending and descending ground tracks. At some later time, the eddy is
likely to reappear under a neighboring ground track. Cheney and Marsh (1981) present
an example from exact-repeat SEASAT data illustrating the disappearance of an eddy
over a 3-week period.
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To reduce the geophysical noise introduced by the appearance and disappearance
of unresolved eddies, sea level maps constructed from altimeter data must be smoothed
over large enough scales to eliminate most of the mesoscale variability (a minimum of a
few degrees of latitude and longitude by perhaps a month). Fields constructed in such a
manner have been analyzed by time-longitude plots, correlation analysis and frequency-
wavenumber spectral analysis to investigate westward propagation along selected latitude
lines. Numerous such studies have found surprisingly clear evidence for westward propa-
gation at approximately the annual cycle with phase speeds that lie very close to the dis-
persion curve for baroclinic Rossby waves (e.g., White et al., 1990; Matthews et al., 1992;
PNrigaud and Delecluse, 1992; Pares-Sierra et al., 1993; Tokmakian and Challenor, 1993).
However, Jacobs et al. (1992) and Schlax and Chelton (1993) have cautioned that aliasing
of the M2 tidal period in the GEOSAT exact 17-day repeat data is manifested as west-
ward propagating variability at near-annual period with a phase speed that very closely
matches that of the first-mode baroclinic Rossby wave. Any errors in the model M2 tidal
constituent used to correct GEOSAT sea level data are therefore indistinguishable from
Rossby waves. Presently available tide models are believed to be accurate generally to
4-5 cm, but are known to be uncertain by 10 cm or more over large areas of the ocean
(Wagner, 1991; Ray, 1993). Consequently, all studies of Rossby wave propagation from
GEOSAT data are compromised to an unknown degree by aliasing of M2 tidal errors.
The GEOSAT orbit configuration was thus a particularly poor choice for investigating
Rossby wave dynamics. The TOPEX orbit has been carefully selected to avoid aliasing of
this nature for any of the major tidal constituents.

The tidal aliasing problem can be reduced by smoothing the GEOSAT data zonally
over length scales longer than the wavelength of the M2 tidal alias (approximately 80 of
longitude - see Jacobs et al., 1992). Chelton et al. (1990) examined large-scale sea level
variability in the Southern Ocean from two years of GEOSAT data smoothed to a res-
olution of approximately 120 of longitude by 60 of latitude by 9 days. The variability
was dominated by the seasonal cycle, with a zonally coherent annual component and a
semiannual component with amplitude and phase that varied over the three major basins
of the Southern Ocean. The variability in the South Atlantic has been investigated by
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Matano et al. (1993) from sea level fields constructed from GEOSAT data with somewhat
higher spatial resolution (60 x 30 x 1 month). The GEOSAT data show that the confluence
of the Brazil and Malvinas Currents migrates seasonally by 2-30 of latitude from a most
northerly location in austral winter to a most southerly location during austral summer
(Figure 9). Numerical simulations of the wind-forced subtropical gyre of the South At-
lantic and GEOSAT estimates of surface geostrophic velocity both indicate that the phase
of the seasonal changes in the latitude of the confluence coincide with opposing seasonal
variations in the alongshore transports of the Brazil and Malvinas Currents.

From the applications summarized in this section, the potential for altimeter data to
contribute information unobtainable by any other means about the temporal evolution of
sea level fields has been clearly demonstrated. Despite problems with measurement errors
(particularly orbit errors and the wet tropospheric range correction) and tidal aliasing,
GEOSAT data have provided new insight about equatorial wave dynamics, eddy propaga-
tion and large-scale sea level variability. An unsettling question that has arisen from most
direct comparisons with in situ measurements from tide gauges and hydrographic data is
why the amplitudes of variability inferred from GEOSAT data are generally somewhat
small (e.g., M6nard, 1988; Cheney et al., 1989; Tai et al., 1989; Chelton et al., 1990; Ar-
nault et al., 1990; 1992). This has variously been attributed to signal attenuation by the
orbit error corrections applied or to excessive smoothing of the data. In order to assess
the impact of the latter, some guidance is needed to determine the space and time scales
that can be resolved by altimeter data. The objective of this study is to determine the
minimum smoothing necessary so that the highest possible resolution is retained in the
sea level fields constructed from altimeter data.

-35.5

- 36 .5 -1

- 95 F 1,

1987 1988

Figure 9. A time history of the latitude of the confluence of the Brazil and Malvinas Currents near the
continental slope of South America as determined from two years of GEOSAT data (thin line). The
smooth, heavy line represents a least-squares fit of annual and semiannual harmonics to the raw data.
(From Matano et al., 1993.)

3. EQUIVALENT TRANSFER FUNCTION

3.1. Formalism

The question of the resolution capability of an irregularly sampled data set is inves-
tigated here by considering a simple approach to smoothing the data based on a linear
estimate constructed from the N "nearest" (in space or time) observations. To simplify
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the notation, the formalism is developed for a 1-dimensional case; extension to higher di-
mensions is straightforward. The jth observation of a stationary stochastic process h(t)
will be written as

gj = h(tj) + fj, j = 1,...,N, (1)

where t is time and cj is the measurement error or unresolved geophysical "noise" in the
jth observation. The general form for a linear estimate of h at an arbitrary time to con-
structed from these N observations is

N

h(to) E •a(to)gj . (2)
j=1

Note that the aj in general depend on the estimation time to. In the statistical literature,
Eq. (2) is referred to as a smoother and the smoother weights aj are referred to as the
equivalent kernel. These weights can be specified by many methods (Buja et al., 1989).
Examples include moving averages, Gaussian weighted averages, local least squares fits
to a polynomial, local weighted least squares fits to a polynomial ("loess smoothers"),
natural or smoothing spline estimates and Gauss-Markov estimates.

The form of the linear estimate that is often preferred is the Gauss-Markov estimate
in which the equivalent kernel is computed from a priori specified signal and noise co-
variance functions (see Appendix B). Gauss-Markov estimation is generally referred to
as "objective analysis" in the oceanographic and meteorological literature (e.g., Gandin,
1965; Bretherton et al., 1976). Examples of objective analysis applied to altimeter data
include De Mey and Robinson (1987) and Fu and Zlotnicki (1989). If the covariance func-
tion is the true covariance function for the process h(t), the Gauss-Markov estimate is
optimal in the sense that it has the lowest mean squared error of all linear estimates of
the form Eq. (2). In practice, the optimal estimate generally differs little from other lin-
ear estimates. The primary advantages of the optimal estimate are that the formalism
easily allows an explicit treatment of measurement errors and provides an expression for
the expected error of the estimate.

The disadvantage of Gauss-Markov estimates is that they are computationally in-
tensive when N is large. For this reason, we have found it more useful for applications to
large altimeter data sets (see, for example, Chelton et al., 1990; Matano et al., 1993) to
apply the quadratic loess smoother described in Appendix A. The computational require-
ments of the loess smoother are much lower than those of Gauss-Markov estimates. It is
shown below that the filtering characteristics of the quadratic loess smoother are nearly
as good as those of Gauss-Markov estimates (see Figures 10, 19 and 20).

When the observations are evenly spaced and the estimation times to coincide with
the observation times, the filtering properties of the smoother are the same at each to,
except near the ends of the sample record, where edge effects become important. These
end regions are usually discarded so that the frequency content is uniform throughout
the smoothed time series. In this case, the filtering properties of the smoother are deter-
mined by expressing the linear estimate in the form of a convolution of the observations
and then applying the convolution theorem to obtain the frequency transfer function of
the smoother.



74 CHELTON AND SCHLAX

When the observations are irregularly spaced, the filtering properties can vary con-
siderably with to (see Figure 7 of Schlax and Chelton, 1992), and the convolution theorem
is not easily applied. As shown in section 5.1, it is desirable to choose the smoothing pa-
rameter of the linear estimate so that the filtering characteristics are nearly the same at
all to. Otherwise, the frequency content of the smoothed time series can be highly nonsta-
tionary (see Figure 14 below).

The filtering properties of the linear estimate are easy to quantify if the linear esti-
mator Eq. (2) is expressed as an integral over t,

h(to) = jof (t; to)g(t) dt, (3)

where
N

A~t; to) = Z j (to)6(t - tj) (4)
j=1

is another way of expressing the equivalent kernel in terms of the Dirac delta function.
The integral expression Eq. (3) can be expressed in the frequency domain using the Power
Theorem (Bracewell, 1978) as

h(to) = j P*(f; to)G(f) df

= P* (f;to)H(f)df + 00P-(f;to)N(f)df

where f is frequency, G(f) is the Fourier transform of the measurements g(t), N(f) is the
Fourier transform of the measurement errors c and P(f; to) is the Fourier transform of
P(t; to), which reduces to

N

P(f;to) = E aj(to)e-i2rfti. (6)
j=1

P is referred to as the equivalent transfer function (Schlax and Chelton, 1992), since it is
closely related to the equivalent kernel weights oj.

In three dimensions, the equivalent transfer function for an estimate of the field at
location (xo,yo,to) is

N

P(k,If; xo, yo, to) - aj(xo, Yo, to)e-21r(kxi+l~i-fti), (7)
j=1

where k and 1 are the zonal and meridional wavenumbers. The sign convention adopted
in Eq. (7) defines the direction of propagating features that are aliased into the smoothed
estimate. For example, positive k and f correspond to eastward propagation (see sec-
tion 3.4).

The filtering characteristics of the smoother are clear from Eq. (5); the equivalent
transfer function specifies how the frequency content of the measurements gi (both the
signal and noise components) are filtered by the linear estimate.
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Determination of the equivalent transfer function P from the smoother weights aj
can be computationally intensive. This is especially true for large, multi-dimensional data
sets. A method for computing P efficiently and with high wavenumber-frequency reso-
lution by a fast Fourier transform technique is presented in the appendix of Schlax and
Chelton (1992).

3.2. A 1-Dimensional Example

In one dimension, the quadratic loess smoother used here to investigate the resolu-
tion capability of irregularly sampled data sets is obtained by a weighted least squares fit
of a quadratic function of t to observations within a distance dt (referred to as the half-
span of the smoother) of the estimation time to. A detailed description is given in Ap-
pendix A.

The equivalent transfer functions of the quadratic loess smoother for two different
half spans are shown in Figure 10a for evenly spaced observations. The main feature of
each transfer function is a low-pass band with near unit amplitude and a sharp cutoff at
a frequency of f, ; dt-1 to near zero values at higher frequencies. This pass band defines
the smoothing characteristics of the linear estimate; the frequency content of the observa-
tions gj is rejected at frequencies where the transfer function has a magnitude of zero and
is fully included where the transfer function has a magnitude of one. The cutoff frequency
f, can be decreased by increasing the span of the quadratic loess smoother, resulting in a
smoother time series of estimates (see Figure 10a).

a

IN Figure 10. The 1-dimensional

I equivalent transfer function
Smodulii of the quadratic loess

00 smoother for a) an evenly spaced
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line); and b) an irregularly spaced
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panels, the estimation point is at
the midpoint of the data record.
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The series of peaks with successively narrower width in the logarithmic plot of the
equivalent transfer function are aliases of the low-pass band, folded about the Nyquist
frequency fN = (2A)- 1 , where A = 1 is the sample interval. The aliasing peaks are cen-



76 CHELTON AND SCHLAX

tered at even multiples of IN. In a linear plot, the widths of each of these alias peaks are
the same as the 2f, width of the central low-pass band that is symmetric about zero fre-
quency. If there is any energy in the signal or noise at these higher frequencies, it will be
aliased into the low-pass band and indistinguishable from actual low frequency variability.

For an ideal filter, the equivalent transfer function would drop abruptly from a mag-
nitude of one to a magnitude of zero at the cutoff frequency f, and would remain zero at
all higher frequencies. The more gradual low-pass band edge rolloff and the alias peaks of
real smoothers represent imperfections of the real filtering operation.

The equivalent transfer function for an example of irregularly spaced observations is
shown in Figure 10b. The low-pass band of interest is very similar to that for the evenly
spaced sample design with the same dt shown in Figure 10a. The primary difference is
the noisy continuum of energy in the transfer function for the uneven design at frequen-
cies higher than f,. The details of these high-frequency characteristics of the equivalent
transfer function depend on the par";cular sample design and on the estimation time to.
Just like aliasing for the case of evedy spaced observations, any energy in the signal or
noise at these frequencies higher than f, will contaminate the lower frequencies that are
of interest in the smoothed estimates. The greater the amplitude of the equivalent trans-
fer function at the higher frequencies, the less efficiently the smoothed estimates will iso-
late the low-frequency content of the signal of interest. Although aliasing loseb its clas-
sical meaning when the observations are irregularly spaced, this high-frequency contami-
nation in the equivalent transfer function will be referred to here as aliasing, for lack of a
better term.

While the band-edge rolloff of the quadratic loess smoother is not quite as sharp as
for Gauss-Markov estimates when the signal-to-noise ratio is high (compare Figure 10
with Figures 19a and 20a in Appendix B), it is sharper than those of other commonly
used smoothers (see Schlax and Chelton, 1992), as well as Gauss-Markov estimates when
the signal-to-noise ratio is small (Figures 19c and 20c). For most purposes, the slightly
less efficient filtering characteristics are compensated for by the much greater computa-
tional efficiency of the quadratic loess smoother; in application to large 3-dimensional
data sets such as altimeter data, Gauss-Markov estimates require about two orders of
magnitude more computing effort and are therefore not practical for studies on basin
scales.

3.3. The GEOSAT Ground Track Pattern Sampled Synoptically

The combined space and time characteristics of the satellite sampling pattern com-
plicate interpretation of the equivalent transfer function. The separate effects of spatial
and temporal sampling become clearer if time dependence is first neglected and synoptic
sampling of the ground track pattern in Figure 6a is considered; the effects of asynoptic
sampling of this grid are examined in section 3.4.

The 2-dimensional wavenumber equivalent transfer function for a quadratic loess es-
timate constructed from the GEOSAT 17-day sample grid is shown in Figure 11 for an
estimation location at a point where ascending and descending ground tracks cross. For
the purposes of this discussion, the GEOSAT data were subsampled at intervals of 50 km
along the ground tracks. All of the information about the spatial regularity of the sample
grid is contained in this figure. The transfer function is symmetric about both wavenum-
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Figure 11. The 2-dimensional wavenumber equivalent transfer function modulus for the GEOSAT ground
track pattern (see Figure 6a) sampled synoptically for estimation point (x0 y0)=(45°W°,30°N) and
quadratic loess smoothing parameters (dxdy)=(50 ,30).These smoothing parameters were chosen
somewhat arbitrarily to illustrate the aliasing patterns inherent in the diamond shaped sample grid. Note
that the wavenumbers axes are linear in this figure.

ber axes. The elliptical plateau centered at zero that drops off steeply to generally small
values at higher wavenumbers is the low-wavenumber pass band of the smoother. The as-
pect ratio of this pass band (longer in the meridional wavenumber direction than in the
zonal wavenumber direction) is the inverse of the ratio of smoothing spans dy/d4 = 3/5.
The other subsidiary peaks (with the same aspect ratio as the low-frequency pass band)
are aliasing peaks that arise because of the very regular diamond-shaped grid of crossover
points. At the 300 latitude of the estimation location, the dimensions of the diamond pat-
terns mapped out by the ground tracks are approximately 1.50 of longitude by 30 of lati-
tude (see Figure 6a). The corresponding Nyquist wavenumbers are about kN = 0.0036 cy-
cle/kim (cycles per kin) and 1N = 0.0015 cycle/km. The minima between the aliasing
peaks and the maxima of the peaks are centered at odd and even multiples, respectively,
of these Nyquist wavenu:mbers (compare with the 1-dimensional example in Figure 10a).
The coarser ground track pattern of a shorter orbit repeat period would result in larger
diamond patterns and, hence, lower Nyquist wavenumbers and more closely spaced alias-
ing peaks. For example, for the approximate 2.70 of longitude by 5.50 of latitude dia-
monds of the TOPEX 10-day repeat orbit, the series of aliasing peaks overlap because
the smoothing parameter d. = 5* is too short for the TOPEX sample grid.

The diagonal patterns of regularly spaced aliasing peaks are thus an indication of
the non-rectangular grid pattern of the crossover points. The tilting of the lines through
the centers of these aliasing peaks are an indication that aliased features in the sea level
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field are tilted parallel to the satellite ground tracks. The slopes of the lines through the
aliasing peaks define the angles of the ground tracks in the spatial domain. In the ex-
treme case of an orthogonal grid aligned east-west and north-south (which, of course, is
not possible for a satellite orbit but is typical of sampling grids for other types of data),
the aliasing peaks would lie along lines parallel to the wavenumber axes.

A second spatial scale is embedded in the regular pattern of the transfer function
in Figure 11. At the 300 latitude of the estimate, the 50 km sample interval along the
ground track represents zonal and meridional sample intervals of about 20 km and 46 km,
respectively. The corresponding Nyquist wavenumbers are kN = 0.025 cycle/km and
IN = 0.011 cycle/km. These Nyquist wavenumbers define the intersection points of the
diagonal patterns of aliasing peaks; the intersections occur at odd multiples of the zonal
and meridional Nyquist wavenumbers of the along-track sample interval. Sampling at
closer intervals along the ground track would result in higher Nyquist wavenumbers and,
hence, larger diamond patterns of the equivalent transfer function in wavenumber space.

3.4. The 3-Dimensional GEOSAT Data Set

When the asynoptic sampling of the satellite ground track is taken into considera-
tion, vis'alization of the 3-dimensional equivalent transfer function is much more difficult
than for the 2-dimensional sample grid considered in section 3.3. As an example of the
ability of the equivalent transfer function to identify space-time structure in the satellite
sampling pattern, a 2-dimensional slice through the transfer function along 900 azimuth
(i.e., along the east axis with zero meridional wavenumber) is shown in Figure 12 for the
GEOSAT data as actually sampled by the satellite. The location of the smoothed esti-
mate for this example is a crossover point.

The low-frequency pass band of the smoother is evident as the plateau region cen-
tered at zero wavenumber and frequency. The interesting characteristic of the equiva-
lent transfer function is the distortion of the usual elliptical pass band in the upper right
quadrant. There is a series of aliasing peaks along a line of slope 1 in this log-log plot.
It is easy to show that constant phase propagation at phase speed cp is manifested in a
log-log plot of the equivalent transfer function as a line with slope 1 that intercepts the
logf = 0 axis at log k = - log cp. The -1.7 cycle/km intercept of the ridge of aliasing
peaks in Figure 12 thus corresponds to a phase speed of about 48 km/day.

For the convention used here (see Eq. (7)), the positive k and f in the right half of
Figure 12 represent eastward propagation. The propagation indicated by the ridge of
aliasing peaks in Figure 12 is therefore eastward. An eastward propagation of 48 km/day
corresponds to 144 km eastward propagation in three days. At this latitude of 30 0N, this
corresponds to the shift in the 3-day subcycle in the GEOSAT sampling pattern discussed
in section 2.4 (see Figure 6b). The wavenumber-frequency transfer functions for the
TOPEX and ERS-1 sampling patterns similarly show propagations of about 85 km/day
eastward and 48 km/day westward, respectively. These are the zonal shifts of the 3-day
subcycles for these other altimeter satellites.

The physical interpretation of the propagating aliasing pattern in the equivalent
transfer function for the GEOSAT sampling pattern is that, if there is any eastward
propagating sea level signal with spectral energy at any of the high-wavenumber, high-
frequency peaks along the aliasing ridge, it will alias into the low-pass band of the loess
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Figure 12. A slice through the 3-dimensional frequency-wavenumber equivalent transfer function modulus
along the 90* azimuth (eastward) for the GEOSAT ground track pattern as actually sampled during each
!1/-day exact repeat period for estimation point (Xo, yo, to ) = (45°W,30*N, day 100) and quadratic loess
smoothing parameters (dx, dy, d,) = (8°,8°,35 days). These smoothing parameters were chosen somewhat

arbitrarily to illustrate the eastward propagating aliasing pattern associated with the 3-day subcycle in the
satellite orbit (see Figure 6b). Note that both axes are logarithmic.

smoothed estimate of the sea level field. That is, the aliased signal will be indistinguish-
able from the low-frequency, low-wavenumber variability of interest and is therefore unde-
tectable in the smoothed sea level fields. On the other hand, if there is no sea level propa-
gation at this phase speed, then this alia~sing ridge is of little concern.

4. ERRORS OF THE SMOOTHED ESTIMATES

The equi-valent transfer function only defines the filtering properties of the smoother
for the specife smoothing parameters selected. Additional information about the signal
characteristics is required to assess the quality of smoothed fields constructed from the
irregulaxly sampled data. The degree to which imperfections in the filtering operation
contaminate estimates of the large-scale, low-frequency signals of interest in the smoothed
fields depends not only on the aliasing patt,ýrns in the equivalent transfer function, but
also on the spectral energies of the signal and noise at the wavenumbers and frequencies
of aliasing peaks in the transfer function. The combined effects of filtering properties and
signal and noise characteristics on the accuracy of the smoothed estimates axe quantified
in this section.

The smoothed estimate h can be compared with an ideal low-pass filtered value,
written as

E 00 /

h(t0) = P*(f;toc)H(f)df, (8)

where H (f ) is the Fourier transform of the unsmoothed signal h(t) and P0*(f ; to, f,) is
the complex conjugate of the transfer function for the ideal smoothed estimate at time
to. This ideal transfer function passes all of the signal at frequencies lower than the cutoff
frequency f, and none of the signal at higher frequencies, i.e.,

0 || iUm -2 0
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P(f ;to,f:) = {e-2rIto oIf < fr (9)10 otherwise.

The complex transfer function P thus has unit modulus for frequencies less than f,. We
have found empirically that the cutoff frequency for the quadratic loess smoother used in
this study is related to the half-span of the smoother by f, - di. This value of fc is
therefore used to define the ideal transfer function in Eq. (9).

Because the measurement errors have zero mean value, it can be seen from Eqs. (5)
and (8) that the bias of the estimate h(to) is

(h(to)) - h(to) = " AP*(f : to,f:)H(f)df , (10)

where the angle brackets denote the mean value and

A P(f; to, f) = P(f; to) - P(f; to, f) (11)

represents the imperfection of the 1-dimensional equivalent transfer function at frequency
f for an estimate at time to with low-frequency cutoff f,. The modulus of AP is shown
schematically by the hatched region in Figure 13. The bias given by Eq. (10) can be in-
terpreted as the error of the estimate h(to) in the absence of any measurement errors.
The bias thus focuses attention on errors introduced solely by the irregular sampling dis-
tribution.

I PI

1.0 -P. Figure 13. A schematic
representation of the imperfections1 P I of the linear smoother given by Eq.
"(11) (hatched region).
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In order to express the imperfections of the filtering operation in terms of the spec-
tral characteristics of the signal h(t), we write the integral in Eq. (10) in the limiting form

h)-h= m E APr(nH(f") ( . (12)
fl-- -00o

For convenience, the explicit dependencies on to and f, have been dropped in Eq. (12).

The expected squared bias is

00 00

([(h) - hI') = lim~Z AP*(fn)AP(sm) (H(fn)HN(.sn)) bfbs. (13)of mo
is:: n=o m=13)
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Because h(t) is assumed t0 be a stationary stochastic process, it is easy to show that

(H(f,,)H*(s,,,)) = 0 if s.. i f,, (14)

(see, for example, Priestley, 1992, p. 249). The expected squared bias then reduces to
00

([(h)_ ]2)= lim Z IAP(fn)I2Sh(fn)bf, (15)
b f - 0 n-. O

where
Sh(A) = lim(H(fn)12 )bs (16)

is the power spectral density of the random process h(t) (Priestley, 1992, p. 208). In the
limit, Eq. (15) becomes the integral

([(h) _q 2) = IIAP(f)I2Sh(f)df. (17)

The expected squared bias (ESB) given by Eq. (17) describes the combined effects
of the signal spectral energy and the equivalent transfer function on the accuracy of the
smoothed estimate h(to). At frequencies f where either the aliasing IAp(f)12 or the
signal energy Sh(f) are small, the integrand in Eq. (17) is small and consequently con-
tributes little to the ESB. Aliasing at frequencies where IAP(f)l is large is therefore of
little concern if the corresponding signal spectral energy Sh(f) is weak.

The ESB as a measure of the accuracy of the estimate h(to) can be compared with
the mean squared error that is more traditionally used to assess the quality of an esti-
mate. For a given realization of the stochastic process h(t), the mean squared error can
be decomposed into the sum of the squared bias and the variance. The expected value
of the mean squared error over the ensemble of realizations of the process (the EMSE) is
therefore the sum of the ESB given by Eq. (17) and the variance of the estimate. By the
same method used to derive Eq. (17), it is easy to show from Eq. (5) that the variance of
the estimate is

([(A) - ,]2) = IAP(f)12SE(f)df, (18)

where SE(f) is the power spectral density of the measurement errors. The variance of
the smoothed estimate thus describes the combined effects of the spectral characteris-
tics of the measurement errors and the equivalent transfer function on the accuracy of the
smoothed estimate h(to).

The present study is primarily concerned with the limitations imposed by the sam-
pling design, regardless of the measurement errors. In the extreme case of no measure-
ment errors, the variance of the smoothed estimate is zero and the EMSE is just the ESB.
Then all of the errors in the smoothed estimate arise from the sampling design. For a rea-
sonably large signal-to-noise variance ratio (greater than 1) and a sufficiently dense sam-
ple design (i.e., a well behaved equivalent transfer function P), the ESB is generally much
larger than the variance. Then the EMSE can be approximated as just the ESB. For the
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altimeter applications of interest in this study, the signal-to-noise variance ratio is large
enough that the variance contribution to the EMSE can be neglected. We therefore re-
strict attention to the ESB as a measure of the accuracy of the smoothed estimates.

The mean squared error formalism is easily extended to three dimensions. The ESB
for one dimension (Eq. (17)) then becomes

[(h(xo,yo,to)) - h(xoyo,oto)] 2 ) = ijLIAAP2SS(k,1,f)dkdtdf, (19)

where
AP = P(k, 1, f; xo, yo, to) - P(k, 1, f; xo, yo, to, k, 1, f) (20)

represents the imperfections of the 3-dimensional equivalent transfer function P compared
with the 3-dimensional transfer function P of the ideal smoother. Determination of the
ESB of a 3-dimensional smoothed estimate thus requires knowledge of the 3-dimensional
wavenumber-frequency spectrum Sh(k, 1, f) of the signal.

In multiple dimensions, the smoother weights aj for observations g(zj, yj, tj) on a
sufficiently dense and regularly spaced sample grid depend only on the distance r from
the estimation location (xo, Yo, to). For the quadratic loess smoother with half spans dx,
d4 and dt, this distance is defined by

r2 = (Xd-Xo) 2 + (yj yo2 + (t to)2 (21)

The Fourier transform of an elliptically symmetric function is also elliptically symmet-
ric (Bracewell, 1978, p. 244). It is therefore appropriate to use an ellipitically symmetric
ideal transfer function for the multidimensional bias calculation, i.e.,

Pe-i27(kxo+Lyo-fto) (k/k )2 + (1/l1)2 + (f/f.)2 < 1 (22)P( k, 1, f ; xo, yo, to, k", 4c, h) 0otews.(2
1.0 otherwise.

As before, the low-pass wavenumber and frequency cutoffs kc, 1, and f, for the quadratic
loess smoother are approximately the reciprocal of the half spans in each dimension.

In three dimensions, evaluation of the triple integral in Eq. (19) by the usual quadra-
ture methods is computationally intensive. For this study, these integrals were estimated
using a weighted Monte Carlo method that is based on sampling the region of integration
at discrete sample points distributed with a probability density proportional to the signal
spectral energy (Press et al., 1992, p. 306).

The power spectral density and the autocovariance function of the signal are Fourier
transform pairs (Priestley, 1992, p. 211). The spectral properties of the signal can there-
fore be specified directly or can be computed from a specified autocovariance function
(equivalent to specifying the signal variance and autocorrelation function). The need
to specify the signal variance (which varies geographically for the sea level fields of in-
terest in this study) can be sidestepped by considering the relative expected squared
bias (RESB), defined to be the ESB given by Eq. (19) normalized by the signal variance

ha. For the applications considered in section 5, the signal spectral shape Sh(k, 1, f)/14h

needed to evaluate the relative accuracy of the smoothed estimate h(to) by the RESB was
obtained from the Fourier transform of the specified signal autocorrelation function.
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5. RESOLUTION CAPABILITY

5.1. A 1-Dimensional Example

The philosophy adopted here to define the resolution capability of an irregularly
spaced data set is easily demonstrated by a simple 1-dimensional example. A densely
sampled synthetic high-frequency time series with unit variance is shown in Figure 14a.
The details of how this time series was generated are not important to this discussion.
The effects of nonuniform sampling of this time series are illustrated by sampling the
time series in Figure 14a with periodic bursts of closely spaced observations, separated
by intervals of coarsely spaced observations. This sampling strategy is intended to be a 1-
dimensional analog of the sampling characteristics of altimeter data, which are character-
ized by dense 2-dimensional sampling at crossover points and sparse coverage elsewhere.
Two different loess smoothed time series were constructed from the unequally spaced ob-
servations to show how the ESB Eq. (17) can be used to select good smoothing parame-
ters for the linear estimates.

0 aFigure 14. a) A high-frequency
synthetic time series.This time

.2 series was observed in bursts of
__,_,_ __ _ _ sample interval 0.2 separated by

4 sparse observations at sample
b interval 2.0; b) a quadratic loess

2 smoothed time series constructed at
intervals of 0.2 using half spans of

o d, = 0.6 during the bursts of

closely spaced observations and d,
-2 = 30 during the periods of coarsely

__. . .... ....._spaced observations; c) a quadratic

4b loess smoothed time series
constructed at intervals of 0.22 using a fixed half span of d, = 30

o, everywhere.

-2

0 50 300 ,50
TIME

In the first example (Figure 14b), the smoothing parameters dt of the loess estimates
were chosen to maximize the information content of the observations. A small value of
dt was used during the bursts of closely spaced observations and a larger value of dt was
used during the periods of coarsely spaced observations. As noted in section 3.2, the low-
pass frequency cutoff of the loess smoother is fc : d7-1 . Consequently, the spectral con-
tent of the loess estimates in the coarsely sampled periods is restricted to lower frequen-
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cies than in the burst periods. The resulting nonstationarity of the smoothed time series
is readily apparent from Figure 14b. Another undesirable characteristic of the smoothed
time series is the nonstationary ESBs of the loess smoothed estimates, which vary from
negligibly small in the burst periods to 0.02 in the coarsely sampled periods.

In the second example (Figure 14c), the smoothed time series was constructed by
fixing the loess smoothing parameter throughout the record to the large value used in
Figure 14b in the coarsely sampled periods. This is equivalent to sacrificing the higher
resolution capability in the burst periods (i.e., "oversmoothing" the data). However, the
benefits of this procedure are apparent from Figure 14c; the spectral content of the result-
ing smoothed time series is stationary. In addition, the ESBs of the loess estimates are
uniform (0.02) throughout the record.

The need to degrade the higher resolution possible in the burst regions is disappoint-
ing. However, for analysis of the full record of unequally spaced observations, the homo-
geneously smooth time series in Figure 14c is much more desirable than the nonstationary
time series in Figure 14b. If the interest is in the higher frequency variability that can be
resolved in the burst periods, then the analysis must be restricted to just the burst peri-
ods. Then the longer-period information content of the full data set is lost by sacrificing
the coarsely sampled periods of the data record.

The philosophy for choosing the appropriate smoothing parameter is therefore
to smooth the data to the resolution that is possible in the sparsely sampled regions.
This can be achieved by selecting a single smoothing parameter for the entire data set
that yields a uniform ESB at every location at which a smoothed estimate is to be con-
structed. The spectral content of the resulting smoothed time series will be stationary.

5.2. The GEOSAT Ground Track Pattern Sampled Synoptically

Extension of the results of section 5.1 to two spatial dimensions further emphasizes
the importance of degrading the resolution capability in densely sampled regions. As in
section 3, the full 3-dimensional characteristics of altimeter sampling are more easily un-
derstood if time dependence is first neglected and synoptic sampling of the ground track
pattern in Figure Ca is considered. Near the crossover points, this sample grid is capa-
ble of providing detailed maps of mesoscale variability. However, along the ground tracks
connecting crossover points and in the unsampled diamond regions in between, only the
larger scale variability can be resolved. A map constructed with the highest resolution
possible at each location (analogous to the 1-dimensional case in Figure 14b) would con-
sist of a patchwork quilt of eddies and meanders near the crossover points and smooth,
large-scale variability elsewhere.

These effects can be quantified in terms of the RESB. The 2-dimensional wavenum-
ber spectrum of sea level must be specified to obtain the RESB. Analyses of dynamic
height fields from hydrographic data provide useful guidance. Shen et al. (1986), Carter
and Robinson (1987) and other studies have found that the spatial structure of the sea
level field can be approximated by an isotropic Gaussian autocorrelation function of the
form

p(r) = e(r/ro)2 , (23)

where r is distance and the spatial scale r0 is approximately 50 km. This spatial scale is
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consistent with independent estimates of p(r) computed directly from altimeter data (Le
Traon e4 al., 1990). The normalized 1-dimensional wavenumber spectrum of sea level for
computing the RESB from Eq. (17) was obtained analytically from the Fourier transform
of this Gaussian autocorrelation function,

Sh(k) = -r r0(24)
2 -/"O 

(24)e1rk

(Bracewell, 1978, p. 130), where u•2 is the (unspecified) sea level variance.

The RESB was computed from the GEOSAT sample grid for a range of loess
smoothing parameters d, and d. at three estimation locations: a crossover point, a di-
amond center, and a point along a ground track midway between two crossover points
(referred to here as a midpoint). A contour plot of the RESBs for the midpoint is shown
in Figure 15. It is evident from this figure that there is no unique choice of smoothing
parameters for a particular RESB; a given RESB can be obtained with high meridional
resolution and low zonal resolution, with low meridional resolution and high zonal reso-
lution, or by compromising to obtain moderate resolution in both dimensions. The ap-
proximate 2-to-i aspect ratio of the contours indicates that a greater degree of smooth-
ing is required in the meridional direction than in the zonal direction to obtain a given
RESB. This is because of the longer meridional dimensions of the diamonds formed by
the ground track patterns.

SFigure 15. Contour plot of the relative expected8 0 squared bias as a function of the longitudinal and

"0 latitudinal quadratic loess smoothing parameters d.

0'
v, and dy for the GEOSAT ground track pattern (see

Figure 6a) sampled synoptically for an estimate at a
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dx (deg longitude)

The simplest form of spatial smoothing is the isotropic smoother for which d" = dy
d.. Isotropic smoothing is used in Figure 16 to illustrate the geographical variability of
the RESB. The three, curves represent the RESB as a function of d, for the three estima-
tion points considered. At the shortest smoothing scale of d. = 20, the RESB is highest
at the diamond center and lowest at the midpoint. At both of these locations, the RESB
decreases monotonically as the smoothing parameter d, increases, converging at about
d, = 40. Curiously, the RESB at the crossover actually increases as d, is increased from
20 to 2.5*and then decreases monotonically for larger d.
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The behavior of the RESB at the crossover is counter-intuitive. For very small d,
(not shown in Figure 16), the RESB is smaller at the crossover than at the midpoint.
However, for d. = 20, the RESB is lower at the midpoint because the region of influence
about the midpoint then includes observations on the neighboring ground tracks from
a wide range of directions. In comparison, the region of influence about the crossover
for d. = 20 includes data only from the two diagonal ground tracks passing through
the crossover; observations are not available from the regions directly north, south, east
and west of the crossover. As the span further increases to d, = 2.50, the lack of zonal
and meridional constraints on the 2-dimensional smoothed estimate at the crossover be-
comes more significant, further increasing the RESB. When d, exceeds 2.50, the region
of influence for the crossover estimate becomes large enough to include zonally adjacent
crossovers and neighboring crossovers along the ground tracks that intersect at the es-
timation point. The 2-dimensional field is then well resolved in all directions and the
RESB of the crossover estimate begins to decrease with increasing d.

The important point made by Figure 16 is that the RESB is not homogeneous over
the map for small spatial smoothing parameter d,. According to the criterion outlined
in section 5.1, the best value of d, for loess estimates constructed at an arbitrary loca-
tion (zo, yo) is the smallest value that gives spatially homogeneous RESB. On the basis
of Figure 16, this is about 50, which is the value of d, at which the RESB curves for the
three estimation locations converge. Such a large degree of smoothing is somewhat overly
pessimistic, however, since this is larger than the dimensions of the GEOSAT diamonds.
The same RESB can be obtained at a somewhat higher resolution if estimates are con-
structed only at the crossover points. Moreover, when the asynopticity of the sampling
of the GEOSAT grid is considered (see section 5.3), temporal smoothing can be used to
further increase the spatial resolution capability.

5.3. The 3-Dimensional GEOSAT Data Set

The RESB is a complicated function of time and geographical location when the
asynoptic sampling characteristics of the GEOSAT ground tracks are considered. The
wavenumber-frequency spectral shape for determining the RESB from Eq. (19) was de-
rived by assuming a Gaussian space-time autocorrelation function
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p(r, r) = (25)

where r is the isotropic spatial lag as in section 5.2 and r is the time lag. The spatial and
temporal scales were chosen to be r0 = 50 km and ro = 30 days. This form is consistent
with the space-time autocorrelation function derived from dynamic height data (Shen et
al., 1986; Carter and Robinson, 1987). The corresponding normalized power spectral den-
sity for computing the RESB is

Sh(k,lj) -,o)-(rr°kfe-(_I)2
2 b e roO (26)

The RESB at a crossover point is contoured in Figure 17 for a range of temporal

and isotropic spatial smoothing parameters dt and d, at two different times during the

10 a Figure 17. The relative expected squared bias as a

function of the temporal and isotropic spatial loess

smoothing parameters d, and d, for the GEOSAT
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correspond to estimates at a crossover location on a)
day 2; and b) day 11.
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GEOSAT 17-day repeat. The plot for day 2 (Figure 17a) corresponds to a time when
both ground tracks passed through this crossover within a 24-hour period. The RESB
is therefore generally small. The peculiar behavior for small dt and d, is a more com-
plex manifestation of the radius of influence problem discussed in section 5.2 (see Fig-
ure 16). When d, = 20, the RESB first increases with increasing de until di = 15 days
and then decreases monotonically for larger dt. This is because short temporal smooth-
ing is well resolved near the time when both ground tracks sample the crossover point.
The smoothed sea level field over longer 15-day periods is not as well resolved because
of the long interval between GEOSAT sampling of neighboring ground tracks. The tem-
poral half span must be increased to more than 15 days for the radius of influence of the
3-dimensional quadratic loess smoother to become large enough to include observations
from neighboring ground tracks, thereby decreasing the RESB.

A similar effect occurs as a function of d, when di is small. When dt = 10 days, the
RESB initially decreases with increasing d, until d, : 3.8°. For larger d1, the RESB first
increases until d. ; 4.50 and then decreases monotonically for larger d.. This effect is
related to the complex temporal structure of the GEOSAT sampling of nearby ground
tracks. For dt = 10 days, the spatial structure of the low-pass filtered sea level field is not
well resolved when d, = 4.50; the smoothed sea level field at this time and location is bet-
ter resolved in the quadratic loess smoothed estimate by either decreasing or increasing
the degree of spatial smoothing.

The contour plot of RESB for day 11 (Figure 17b) is much simpler than that for
day 2. The RESB decreases monotonically with increasing di and d. over the full ranges
of these smoothing parameters. At day 11, this crossover point and the neighboring
ground tracks are not sampled at nearby times. A much greater degree of smoothing
(spatially or temporally) is therefore required than on day 2 to achieve a given value of
RESB.

The spatial and temporal inhomogeneity of the RESB evident from Figure 17 com-
plicates selection of a good combination of the smoothing parameters d, and dt. A given
value of the RESB can be achieved at any particular estimation time to by trading off d'
against dt. However, the RESB for a specific choice of these smoothing parameters will,
in general, differ for different estimation times to.

The temporal variability of the RESB at this crossover location during a 17-day
GEOSAT repeat period is shown in Figure 18 for six different combinations of d. and
dr. For small dr, the RESB is rather erratic and varies by more than an order of magni-
tude over the 17-day repeat period unless d. is very large (see the examples for (d., dt)
(4,10) and (8, 10)); the RESB is generally large with localized decreases at times when
there are GEOSAT ground tracks nearby. When the temporal span dt is increased to val-
ues larger than the 17-day repeat period, the radius of influence of the quadratic loess
smoother includes sufficient data to yield well-behaved time series of the RESB. For
this particular crossover location, the RESB tends to have a minimum at day 2 with
maxima at days 7 and 14 separated by a local minimum at day 11 (see the example for
(d., dt) = (2,20)). These features of the RESB time series reflect the temporal distribu-
tion of ascending and descending ground tracks in the vicinity of the estimation location.

The time series of RESB at other crossover locations exhibit similar periodic vari-
ations over each 17-day repeat period. The timing of the minima and maxima vary, de-
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pending on the temporal distribution of GEOSAT data near the particular crossover loca-
tion.

Two of the combinations of d8 and dt in Figure 18 are of particular interest. When
(d., dt) = (3,30) the RESB is approximately a constant value of 0.1 over the 17-day
repeat period. When (d,,dt) = (4,30), the RESB is about 0.05 and is also constant
over the 17-day period. The time series of RESB at other crossover locations are simi-
larly approximately constant over the 17-day repeat period. By the criterion outlined in
section 5.1, either of these would therefore be good choices for d, and dt. The choice of
(d., dt) = (4,30) is the more conservative of the two as it yields an RESB that is about
half as large. Note that while the RESB for (do,dt) = (4,20) is everywhere smaller than
that for (3,30), it varies by a factor of two over the 17-day period. As discussed in sec-
tion 5.1, this temporally inhomogeneous RESB is less desirable than tolerating the some-
what higher RESB for (d,,dt) = (3,30).

On the basis of Figure 18, we conclude that the GEOSAT sampling pattern is ca-
pable of resolving the spatial and temporal characteristics of sea level variability on
monthly and longer time scales. The spatial resolution of monthly maps constructed from
GEOSAT data is 30 or 40, depending on how liberal one chooses to be about the degree
of RESB that is tolerable. The effects of measurement errors and data dropouts have
been neglected in this analysis.

It should be noted that the RESB for these choices of loess smoothing parameters
are generally larger and not necessarily constant temporally over the 17-day repeat pe-
riod at locations other than at crossover points. A greater degree of spatial or temporal
smoothing would therefore be necessary for quadratic loess estimates at these other loca-
tions. However, the spatial smoothing parameters of d, = 30 or 40 are large enough that
the spatial dimensions of the smoothed estimates at neighboring crossover locations al-
ready overlap. Consequently, estimates at only the crossover points are adequate for con-
structing maps of the sea level field and there is no need to estimate the smoothed field at
any other locations.
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6. DISCUSSION AND CONCLUSIONS

The summary of past altimeter studies in section 2 showed that determination of ab-
solute sea surface topography by satellite altimetry is presently limited by uncertainties
in the marine geoid and orbit height. As a result of significant improvements in precision
orbit determination, orbit errors are now less than 10 cm, which has greatly extended the
utility of altimeter data. The marine geoid will continue to be the limiting factor until
a dedicated gravity-mapping satellite can be launched to map the global marine geoid
with an accuracy of a few centimeters on scales of ,,,50 km and longer. The accuracy of
presently available estimates of the marine geoid is ,,.30 cm overall. Because the longer
scales of the marine geoid are known most accurately, accurate estimates of the mean sea
surface topography are limited to only very large spatial scales.

Uncertainties in the marine geoid and orbit height become much less important if
interest is restricted to studies of sea level variability: the marine geoid is eliminated be-
cause it is time invariant over the duration of a satellite mission, and time-dependent or-
bit errors can essentially be eliminated by simple statistical techniques. Numerous stud-
ies have shown that variance statistics can be reliably computed from altimeter data and
analyzed to study ocean variability on geographical scales that cannot be addressed by
other data sets. The global geographical distribution and dynamics of eddy variability
have been investigated from sea level variances and wavenumber spectra derived from al-
timeter data. The anisotropy of surface velocity variability near topographic features and
in the vicinity of intense currents has been investigated over the Southern Ocean from
surface geostrophic velocity variances estimated from altimeter data. The velocity vari-
ances have also been used to investigate eddy transfer of momentum in strong, horizon-
tally sheared mean flows.

The variance statistics that can be readily obtained from altimeter data do not fully
exploit the information content of the data. For many applications, it is desirable to map
the time evolution of the sea level field. This is a much more difficult problem as it re-
quires an understanding of the resolution capability of altimeter data. To date, the scales
considered in studies of mapped sea level variability vary widely and have been chosen
rather arbitrarily.

In this paper, a method has been presented for quantifying the resolution capabil-
ity of an arbitrarily sampled data set. The emphasis has been on altimeter data, but
the method is applicable to any irregularly sampled data set. The focus here is on deriv-
ing sea level fields for applications such as descriptive studies of sea level variability and
model validation. Ultimately, it may be possible to derive higher spatial and temporal
resolution sea level fields by combining the data with a model through some form of so-
phisticated data assimilation. Before this is done, however, the information content of the
data alone must be established. The method here identifies the scales at which reliable
sea level fields can be derived from altimeter data.

The starting point for application of the method is to concede that a practical lim-
itation of the coarse grid formed by the ground track pattern and asynoptic sampling of
the grid is that altimeter data can only resolve large-scale, low-frequency variability. The
data must therefore be smoothed to some degree to reduce the effects of aliasing of un-
resolved variability. The term aliasing is used here for irregularly spaced data in a more
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general context than the classical meaning of the term, as discussed in section 3.2. The
objective is to smooth the data to the minimum degree necessary, thereby preserving as
much of the information content of the data as possible.

The methodology is based on the equivalent transfer function, which is easily com-
puted as the Fourier transform of the weights of an arbitrary linear, smoothed estimate.
The equivalent transfer function defines how the spectral content of the observations (sig-
nal plus noise) is filtered in a smoothed estimate of the sea level field at a specific loca-
tion in space and time and for a specific choice of smoothing parameters. The equiva-
lent transfer function also provides an efficient way to describe systematic patterns in the
sampling characteristics that are often difficult to detect by other means. The 3-day sub-
cycle in the ground track pattern of altimeter satellites shown in section 3.4 is a relatively
simple example. A more complicated example where the equivalent transfer function has
proven useful is in the determination of which tidal frequencies can significantly alias al-
timeter estimates of large-scale, low-frequency sea level variability for a specific orbit con-
figuration (Schlax and Chelton, 1993).

The equivalent transfer function only identifies the wavenumbers and frequencies at
which contamination of the low-frequency, low-wavenumber scales of interest is poten-
tially a problem. As such, the equivalent transfer function is not sufficient to determine
the resolution capability of the irregularly sampled data set. If there is no signal energy
at these wavenumbers and frequencies then there is no contamination of the low-pass
band. The mean squared error formalism in section 4 quantifies the degree of contami-
nation by combining the equivalent transfer function and the signal spectrum to quantify
the accuracy of the smoothed estimate of the field for a specific location and a specific de-
gree of smoothing. In practice, the relative expected squared bias (RESB) contribution to
the mean squared error is usually sufficient to determine the resolution capability of the
data set.

The method thus requires that the shape of the signal spectrum be prescribed a pri-
ori in order to compute the RESB. For the sea level signal of interest here, the signal au-
tocorrelation function was assumed to be Gaussian in space and time with spatial and
temporal scales of 50 km and 30 days. This form was adopted on the basis of indepen-
dent estimates from hydrographic data. The RESBs presented here are pessimistic if
these decorrelation scales are too short.

The procedure for determining the resolution capability is straightforward but in-
volves a large volume of information that must be examined to determine the degree
of smoothing necessary to obtain sensible fields from the irregularly spaced observa-
tions. The wavenumber-frequency content of the linear estimate and the RESB in gen-
eral vary with the time and location of the estimation point and with the specified de-
gree of smoothing. The approach requires determination of the RESB at a large number
of estimation points for a wide range of smoothing parameters. For the quadratic loess
smoother used here (see Appendix A), the smoothing parameters are the half spans of
the smoother in the three dimensions. For the Gauss-Markov smoothers discussed in Ap-
pendix B, the smoothing parameters are the correlation time scales in the three dimen-
sions and the signal-to-noise variance ratio.

FRom this multidimensional array of RESB values (three dimensions for the estima-
tion points plus three additional dimensions for the smoothing parameters), the recom-



92 CHELTON AND SCHLAX

mended approach is to find a fixed combination of smoothing parameters that yields a
spatially and temporally homogeneous field of RESB. There is no unique solution for the
"best" combination of smoothing parameters; the smoothing parameter in one dimension
can be traded off against smoothing parameters in the other dimensions to obtain differ-
ent resolutions with the same RESB.

By fixing the smoothing parameters to the same values at all estimation points, the
wavenumber-frequency content of the estimated field is spatially and temporally homoge-
neous. This is a rather different philosophy than is usually adopted in the statistical liter-
ature. Statisticians generally select the smoothing parameter of a linear estimate accord-
ing to the variance of the estimate (as opposed to the expected squared bias used here).
The spans are then related to the number of observations in a linear estimate, rather
than to the physical space spanned by the smoother. As shown in section 5.1, this ap-
proach causes the wavenumber-frequency content of the estimates to vary spatially and
temporally, depending on the sampling distribution (see also Schlax and Chelton, 1992,
section 2.3). Fixing the smoothing parameters to the same values everywhere yields esti-
mates with essentially the same low-pass band at all estimation points.

In general, the RESB varies with estimation location when a fixed combination of
smoothing parameters is used everywhere. This is why the recommended strategy is to
seek a fixed combination of smoothing parameters that yields a spatially and temporally
homogeneous field of RESB. The resolution capability in densely sampled areas of the
data set is thus deliberately degraded by "oversmoothing" to the lower resolution that
can be resolved in the sparsely sampled areas. The philosophy of this approach is that it
is preferable to sacrifice the higher resolution that is possible at the densely sampled areas
than to produce smoothed fields with spatially and tem-orally inhomogeneous spectral
content and RESB that are purely an artifact of the data distribution and smoothing pro-
cedure.

If the interest is in short-scale variability, then low-pass filtering by the recommended
approach is dearly undesirable. These shorter scales of variability can be retained as long
as attention is restricted to the areas of the data record where they are adequately re-
solved. If the entire data set is to be analyzed as a single record, then the data must be
low-pass filtered to retain only the long scales that are resolved everywhere in the data
set.

Application of the method to the GEOSAT data set concludes that the spatial and
temporal scales of sea level variability that can be resolved are about 30 or 40 of latitude
and longitude by about 30 days for estimates constructed at the crossovers of ascending
and descending ground tracks. At shorter spatial and temporal scales, the RESB of the
smoothed estimates varies substantially over the GEOSAT 17-day repeat period and with
location in the grid of crossovers.

It should be kept in mind that the estimates of sampling errors presented in sec-
tion 5 neglect the effects of measurement errors. Residual orbit errors in GEOSAT data
are likely to render the resolution capability deduced here somewhat optimistic. The es-
timates of sampling error are also based on the nominal GEOSAT sampling pattern and
thus assume complete data coverage. Because of problems with GEOSAT attitude con-
trol, seasonally varying data dropouts at middle and high latitudes were common along
descending ground tracks in the northern hemisphere and ascending ground tracks in the
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southern hemisphere (see Cheney et al., 1988, Figure 2). This data loss also renders the
GEOSAT resolution capability deduced here overly optimistic at locations and times of
significant data dropouts.

The resolution capability of 30 or 40 by 30 days is adequate for studies of large-
scale, low-frequency sea level variability. This is generally too large, however, for mapping
mesoscale variability such as short-scale meanders in the flow and detachment and subse-
quent drift of rings. At the present time, there are two satellite altimeters simultaneously
observing the global sea level variability. The ERS-1 altimeter launched in July 1991 and
the TOPEX altimeter launched in August 1992 are expected to continue providing useful
data for several years. By combining data from these two altimeters, it will be possible
to map the sea level variability with higher spatial and temporal resolution than can be
obtained from either altimeter individually. It is a straightforward application of the for-
malism presented in this paper to quantify the spatial and temporal resolution capability
of the combined ERS-1 and TOPEX data sets.

APPENDIX A. QUADRATIC LOESS SMOOTHERS

Loess smoothers are discussed extensively by Cleveland and Devlin (1988) and
Schlax and Chelton (1992). The quadratic loess estimate at time to is defined to be a lo-
cal weighted least squares fit of a quadratic function of t to the N observations nearest
to,

h(t) = al + a2t + a3 t2. (A.1)

The smoothed estimate is the least-squares fit Eq. (A.1) evaluated at to. The coefficients
al, a2 and a3 are determined by minimizing the function

N

= 1w [h(tj) - h(tj)I2 (A.2)

where W is the sum of the weights wj, defined by the bell-shaped function
(1- q3 )3 0<q•<l

Wj 3 0 >1qj < (A.3a)

(,- to2

qj ) - (A.3b)

The parameter dt is the half-span of the loess smoother.

The loess smoother formalism is easily extended to three dimensions, in which case
there are ten least squares parameters ai and the bell-shaped weighting function is ellip-
soidal with half-spans dx, d. and dt,

qj = , ,o)2 + ( Yj, _ Y ))2 + ( - 3 _.to ) 2] (A.4)

The quadratic loess estimate can be expressed in the standard form of a linear es-
timate Eq. (2) by the impulse response method. This is most easily seen from Eq. (3).
Suppose that the only observation is gk = 1. In this case, g(t) = 6(t - tk), i.e., an impulse
at time tk. By the sifting property of the Dirac delta function (Bracewell, 1978, p. 75),
the loess smoothed estimate Eq. (3) then reduces to
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hk(to) = At~oO)
N

= Oj(tO)6(tk - ti) (A.5)
j=1

= ck(to).

The smoother weight for the observation at time tk is therefore the quadratic loess
smoothed estimate Eq. (A.5) obtained by replacing the N observations with a single ob-
servation that has unit value at time t k and values of zero at all other observation times.
The N smoother weights a1 in Eq. (2) are thus derived by constructing N such quadratic
loess estimates, one for an impulse function at each of the observation times tj.

After obtaining the weights ai for the particular smoothing parameter dt by the im-
pulse response method, it is straightforward to determine the filtering characteristics of
the quadratic loess smoother from the equivalent transfer function Eq. (6). The equiva-
lent transfer functions for 1-dimensional quadratic loess smoothers with evenly and irreg-
ularly spaced observations are discussed in section 3.2 (see Figure 10).

APPENDIX B. GAUSS-MARKOV SMOOTHERS

The formalism for Gauss-Markov estimation (also known as objective analysis)
has been presented many times before (e.g., Gandin, 1965; Alaka and Elvander, 1972;
Bretherton et al., 1976; Daley, 1991). The essential elements are reviewed here to es-
tablish a framework for investigating the filtering properties of Gauss-Markov estimates
through the equivalent transfer function introduced in section 3.1. The smoother weights
that minimize the mean squared error of the linear estimate Eq. (2) are given by

N

aj(to) = DbijA,(to), (B.1)
i=1

a result known as the Gauss-Markov theorem. In Eq. (B.1),

Ai(to) - (h(o)h(t,)) (B.2)
=_ PtOO - 4i)

is the signal autocorrelation at lag (to - ti) and bij is the i,jth element of the inverse
of the N x N cross correlation matrix of the data observations gj. The elements of this
cross correlation matrix are

Di. = Pi', + A-'-Nj , (B.3)

where

P - (h(ti)h(t))( t) (B.4)
=t p,-W
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is the signal autocorrelation at lag (ti - ti),

- (c'cj)

W(2) (B.5)
= r(ti - tj)

is the autocorrelation of the measurement errors and A is the signal-to-noise variance ra-

tio.

The linear estimate constructed from smoother weights given by Eq. (B.1) is optimal
(i.e., has the lowest mean square error of all linear estimates of the form Eq. (2)) only if
the true autocorrelations p(r), i(r) (where r is time lag) and signal-to-noise ratio A are
used. Moreover, the expected squared error of estimates computed by this formalism are
valid only if the correct values for these parameters are used. If these three parameters
are specified in a more arbitrary manner (perhaps because of ignorance of the true val-
ues or in order to filter the data as described below), the solution is more appropriately
referred to as suboptimal or Gauss-Markov estimation. The latter term will be used here.

In order to investigate the filtering properties of Gauss-Markov estimates, the sig-
nal autocorrelation function p(r) will be assumed to be a Gaussian function of time
lag, p(r) = _(r/,r)2, and the measurement errors will be assumed to be uncorrelated,
qti - tj) 6i.i. The equivalent transfer functions of the corresponding Gauss-Markov
estimates for error-free measurements and signal correlation time scales of ro = 30 and
60 are shown in Figure 19a for evenly spaced observations at sample interval A = 1. 1 ae
transfer functions are characterized by a flat low-frequency pass band with unit ampli-
tude and a very sharp cutoff at frequency f, ; 1.2to1 . The filtering properties can thus
be controlled by adjusting the signal correlation time scale rO, analogous to adjusting the
half span dt of the quadratic loess smoother considered in Appendix A and section 3.2.
The series of high frequency peaks centered on even multiples of the Nyquist frequency
fN = (2A)-1 are the aliasing peaks discussed in section 3.2 for the loess smoother (see
Figure 10a).

The effects of measurement errors are shown in Figures 19b and c, which are the
equivalent transfer functions of Gauss-Markov estimates with signal correlation time
scale rO = 30 and signal-to-noise ratios of A = 1 and 0.1, respectively. With increasing
measurement error variance (decreasing A), the amplitude of the transfer function in the
pass band decreases, the pass band cutoff frequency f, shifts to lower frequencies and the
sharpness of the band-edge rolloff decreases. In the limit of zero signal-to-noise ratio, the
equivalent transfer function collapses to zero everywhere, corresponding to a linear es-
timate of zero. Note that the equivalent transfer function for A = 1 is not significantly
different from that of the quadratic loess smoother shown in Figure 10a, apart from the
slightly less than unit value across the low-frequency pass band.

The direct incorporation of statistical information about measurement errors is an
important advantage of Gauss-Markov estimates. The quadratic loess smoother and other
commonly used linear smoothers have near unit amplitude across the entire low-frequency
pass band, regardless of the measurement error characteristics. These other estimates
therefore pass all of the low-frequency spectral energy of the measurement errors as well
as of the signal of interest. As suggested by Press et al. (1992, section 13.3), the ampli-
tudes of the transfer functions of the more traditional smoothers can be reduced in mag-
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nitude to mitigate the effects of measurement errors on the variance of the linear esti-
mates.

The equivalent transfer functions of Gauss-Markov estimates for an example of ir-
regularly spaced observations are shown in Figure 20 for signal-to-noise variance ratios
of A = oo, 1 and 0.1. The low-pass bands of interest are essentially the same as those of
their counterpart equivalent transfer functions for uniformly spaced observations shown in
Figure 19. The noisy continuums of energy in the transfer functions at frequencies higher
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than f, represent the effects of "aliasing" from the uneven sample design, as discussed in
section 3.2. The details of this aliasing depend on the particular sample design and on
the estimation time to.

Although it is not generally viewed in this context, it is apparent from the equivalent
transfer functions in Figures 19 and 20 that Gauss-Markov estimation can be considered
as a low-pass smoother. In this sense, it is just like any of the other smoothers that are
commonly used to low-pass filter a noisy or irregularly sampled data set. The low-pass
cutoff frequency and sharpness of the band-edge rolloff of the equivalent transfer function
are controlled by appropriate choices of r0 and A. It should be noted that Gauss-Markov
estimates with arbitrarily prescribed ro and A are not the optimal estimate of low-pass
filtered data. Such an optimal estimate can be constructed, however, by an extension of
the Gauss-Markov formalism to find the minimum mean squared error estimate for the
linear filtering operator applied to the data.

The disadvantage of Gauss-Markov estimates is the computational effort required
to obtain the inverse of the N x N cross correlation matrix needed to determine the
smoother weights by Eq. (B.1). If the primary interest is to obtain low-pass filtered es-
timates of h(t) (as it is in this study), this computational effort is unwarranted; the filter-
ing properties of the quadratic loess smoother considered in Appendix A and section 3.2
are very similar to those of the Gauss-Markov smoothers for realistic signal-to-noise ratios
of A = 1 to 10. The computational effort required for quadratic loess estimates is much
smaller for large values of N.
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ABSTRACT

Some physical variables are natural spatial integrals of oceanic water motion or state
properties. Observation of these variables permits isolation of physical processes that
might otherwise be difficult to examine because of the superposition of many phenomena
at one place. Independent of a particular physical model, observations of such integrating
quantities frequently enable direct determination of relatedness between variables at
different locations, and direct determination of causality, while more traditional point
observations may fail to find such relationships. Furthermore, integral quantities such as
volume and heat transport, which are now being studied with great fervor because of their
climatic importance, are likely more accurately estimated using observations of
"integrating" variables than using a set of point measurements. Examples of integrating
types of variables, such as horizontal electric fields, vertical acoustic travel time and
bottom pressure, are used to demonstrate the ideas above with examples drawn from the
study of (a) atmospherically forced, mesoscale motions, and (b) the volume and heat
transports of the Gulf Stream.

INTRODUCTION

At any particular location in the oceans, the sub-inertial water motions and fluctuations of
state properties are likely to be due to a superposition (and, possibly, interaction) of a
variety of phenomena that each have specific and different balances between acceleration,
advection, Coriolis forces, pressure, dissipation, external forcing, and so on. Time-
dependent boundary layers exist as a result of property fluxes to and from the atmosphere
and earth. Semi-permanent meso- and gyre-scale currents (0(100 kin) and 0(1000 km),
respectively) of the "general circulation" are forced by the winds and property fluxes, and,
through instabilities, produce meso- and gyre-scale variability in the form of meandering
currents, coherent vortices, radiated waves, and so on. Meso- and gyre-scale variability
can also be directly driven by the atmosphere. Each of these, and many other unlisted
phenomena, exist at a variety of space scales for each time scale, so that they overlap each
other not only in physical space and time, but in frequency and wavenumber space as well.
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To decipher the ocean's physics, it is often preferable to examine a single phenomenon at
a time. Then one has to consider "contamination" from the other phenomena that would
inhibit, for instance, direct detection of relatedness among oceanic variables and between
oceanic and atmospheric variables.

There are of course a number of strategies for isolating particular phenomena in order to
study their kinematics and dynamics. Sometimes, time series of variables are all that is
needed to separate phenomena according to their characteristic frequencies. Other times,
spatial information is needed, which raises the cost and difficulty of a field experiment, but
which allows discrimination of wavenumbers or principal components and thereby possible
discrimination of different processes. Frequently, experiments are designed so that there is
a reasonable certainty that the phenomenon to be studied dominates all other processes.
However, there are many instances when this cannot be accomplished. In these cases,
observations are usually compared with model output visually, graphically, statistically, or
through dynamical parameter estimation. Such comparisons can lead to the identification
of the quality of the dynamical hypotheses as a function of frequency and/or wavenumber.
It is not unusual for experiments to be designed to take advantage of most if not all of the
strategies above.

The purpose of this note is to point out that there now exists an additional observational
strategy, most components of which are rather new to oceanography, for isolating
phenomena that are large scale in the vertical and/or horizontal. This strategy is based on
the measurement of integrating variables. The spatial filtering inherent in these variables
frequently enables statistical confirmation of important large scale kinematic and dynamic
relationships which might otherwise go undetected except with a formidably large array of
point measurements. Yet, in deference to the theme of this workshop, it must be
acknowledged that isolating large scale phenomena does not imply that the phenomena
observed, or statistics of these phenomena estimated from integrating variables, are
homogeneous over large scales as well. This inhomogeneity complicates, if not invalidates,
the application of many statistical procedures that assume homogeneity.

We define integrating variables as those that are natural spatial integrals of oceanic water
motion or state properties. Table 1 lists a few of the more important integrating variables
being observed today. These integrating variables are ones that by their very nature tend
to filter out the shorter spatial scale variability. The techniques we'll discuss in this note
are those whose usefulness is well-established and which offer the advantage of cost-
effectiveness. In addition, these techniques may have greater accuracy in comparison to
using a suite of point measurements when the ultimate goal of an investigation is the
measurement of an integral quantity such as volume transport.
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Table 1. Examples of Integrating Variables.

Variable Principal component References
of integrand

Horizontal electric fields Conductivity-weighted Sanford (1971)
at a point horizontal water velocity, Chave & Luther (1990)

from seafloor to sea Luther et al. (1991)
surface

Voltages across fixed Conductivity-weighted Larsen & Sanford (1985)
horizontal distances horizontal water velocity Larsen (1992)
(typically, using (one component only), Chave et al. (1992b)
abandoned undersea from seafloor to sea
telephone cables) surface over a fixed

horizontal distance

Vertical acoustic travel Inverse sound speed Watts & Rossby (1977)
time from seafloor to sea Pickart & Watts (1990)

surface

Bottom pressure Horizontal water velocity Brown et al. (1975)
near the seafloor, over a Whitworth & Peterson
fixed horizontal distance (1985)

Horizontal acoustic Inverse sound speed Munk & Forbes (1989)
travel time (acoustic along horizontal, depth-
thermometry) varying ray paths

Reciprocal acoustic Water velocity along Worcester (1977)
travel time horizontal, depth-varying Worcester et al. (1991)

ray paths

Orientation of the earth's Global mass distribution Chao (1988)
axis of rotation (especially in hydrologic Eubanks (1993)

reservoirs)

Rotation rate of the earth Global atmospheric Hide & Dickey (1991)
angular momentum Eubanks (1993)
(principally, fluctuations
in zonal winds)
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Measurement of integrating variables allows the investigator to focus immediately on a
specific region of wavenumber space, without the "contamination" of shorter scale
variability that may depend on processes other than the one being sought. Furthermore,
such restriction of the wavenumber space may enable the detection of properties (like
spatial coherence or air-sea coherence) that tend to zero as the wavenumber bandwidth
increases and may provide more useful constraints for numerical model simulations than
do point measurements.

In the sections that follow, we will describe applications of three of the more
underutilized, yet most cost-effective, integrating variables listed in Table 1, including
point measurements of horizontal electric fields (HEFs), vertical acoustic travel time
(VATT), and bottom pressure (Pb). We will show how observations of HEFs and Pb in
the Barotropic, Electromagnetic and Pressure Experiment (BEMPEX) provided definitive
evidence of the existence of gyre-scale motions that are directly forced by sea surface
winds. Horizontal electric field data from the Synoptic Ocean Prediction (SYNOP)
experiment will be shown that suggest the greater accuracy of these integrating variables
in estimates of volume transport. And, we will outline the potential utility of combining
HEF and VATT observations to obtain nearly direct estimates from the seafloor of heat
transport and the gravest vertical structures of horizontal currents and temperature
fluctuations.

HORIZONTAL ELECTRIC FIELDS

Motional electromagnetic induction is now theoretically well understood in certain
idealized settings (e.g., Sanford, 1971; Chave and Luther, 1990). Assuming distant
continental boundaries and a flat seafloor with laterally homogeneous conductivity, then
for the low-frequency limit where the aspect ratio of ocean currents is small, where the
effect of self induction is weak, and where the vertical velocity can be neglected in
comparison with the horizontal velocity, it can be shown that the point HEFs are related
to horizontal water velocity by

Eh(x,y,t)=CFk x×< Vh N(Yt) + + N(x,y,t), (1)

where
0
J dz ca(x, y,z,t) 0P (x, y,z,t)

< vh (X,y,t) >*= 0 (2)
J dz a(x, y,zt)

and is called the conductivity-weighted, vertically averaged (CWVA) water velocity;
-h (x,y,z,t) is horizontal water velocity; a(x,y,z,t) is seawater electrical conductivity; F,
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is the vertical component of the geomagnetic field; and H(x,y) is ocean depth. The scale
factor C depends on a(z ! -H); C can be estimated by intercomparisons, but extensive
geophysical evidence suggests that C = 0.95 ± 0.05 almost everywhere in the deep oceans
(e.g., Chave and Luther, 1990). A noise term N(x,y,t) is composed of externally
produced (i.e., in the ionosphere and magnetosphere) electromagnetic fields that dominate
for periods shorter than a few days but are negligible at longer periods (e.g., Chave et al.,
1989).

Locally and non-locally produced electric currents are represented by J* Given usual
oceanic scales of motion at sub-inertial periods (greater than half a pendulum day), locally
produced electric currents are theoretically negligible if the bottom is flat (Chave and
Luther, 1990) or the flow is aligned along isobaths (Stephenson and Bryan, 1992). Local

generation of J may be sufficient to inhibit accurate estimation of ocean water currents
with electric fields only where the currents cut across isobaths and then only if the
underlying sediments are relatively non-conductive (Larsen, 1992; Stephenson and Bryan,
1992). Meandering of a narrow current like the Gulf Stream can theoretically produce
non-zero J* outside of the stream boundaries (the principal example of non-local
generation of j*), which theoretically could be a large noise relative to the electric field
signal induced by the smaller water currents there. However, Sanford (1986) has pointed
out that observations have shown J*/a to be small [yielding errors of 0(1 cm/s)] and
generally negligible. And our own work with the SYNOP data has shown that the best
agreement between the moored current meter data and the horizontal electrometer data
occurs where the currents are moderate to weak, resulting in no detectable J*. Therefore,
in the following, P* is ignored.
Dropping the horizontal dependences and letting a(z,t) equal a vertical average part plus a

residual, i.e., 0

a(z,t)=<(t)0>÷+(z,t), where <a(t) >= -_dzo(z,), (3)

then Eq. 2 becomes
0

-1dz & (x, )PV (x, t)
<Vh(t)>" =<V(t) >-+ H (4)H < a(t) >

The first term on the right hand side (RHS) of Eq. (4) is just the vertical average of
horizontal water velocity (or depth-normalized transport per unit width). The second term
on the RHS of Eq. (4) is a small contribution because seawater conductivity is a weak
function of depth. Note that j&(z,t) I << < a(t) >; < o(t) > is always greater than 3 Siemens
mi-,; to a good approximation, a(z,t) = 3.3 + 0.09T(z,t) Siemens nr-1, where T(z,t) is
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unless the horizontal currents are strong and baroclinic (i.e., have large vertical shear).
Assuming low-frequency motions so that N(t) can be ignored, and using Eq. (4), the
components of Eq. (1) in the northern hemisphere become

EOF,( I°H a(zt)>
- < u(t) >+ I fj r(t) u(z,t)dz, (5a)

E(t) v I) o1jc(z)vz0d,(b
F < a,(t) >

where the subscript on E denotes the direction in which that term is positive and the
superscript indicates the horizontal water velocity component to which it is proportional.
Clearly, the HEFs are integrating variables in the sense defined in the introduction, being
proportional to the vertical average of horizontal water velocity plus a small
"contamination" due to conductivity. The conductivity contribution is negligible if
conductivity is independent of depth in the ocean (as it is at very high latitudes) or if the
horizontal water velocity has little vertical shear (as frequently occurs at mid- to high-
latitudes).

Normal Modes

To elucidate further the relationships in Eq. (5), it is useful to expand the various
quantities in terms of the dynamical normal modes. While any complete basis set could be
used, the dynamical normal modes have a vertical dependence that permits rapid
convergence of the expansions of horizontal velocity and seawater conductivity and
temperature. Despite the fact that the dynamical normal modes are obtained from the
equations of motion by various simplifying assumptions such as no mean flow and
linearity, in using these modes here we are not making any assumptions about the
underlying dynamics of the quantities being observed. The modes are simply the most
convenient basis set for our purposes.

The dynamical modes are obtained from the equations of motion by assuming no mean
flow, mean stratification in hydrostatic balance, and a flat bottom. With horizontal velocity
and pressure proportional to 0i (z), and vertical velocity and density perturbations
proportional to 91(z), the equations for Boussinesq linear waves (small perturbations) then
separate into sets of equations for the horizontal/time dependence and vertical
dependence. Specifically, with

p(z,t)/ p.ajnd di(x,y,t)
and
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p(z,g(z) - &(x,y,t)} (z) (6b)

IIY~~zg d•g the N2 andZoI (, 01 aif

where p=p.+P(z)+p(z,t) and N2(z)=-A-L£ then #and Osatisfdy
SdO, and N2

d"=- and =-o (6c)
dz dz

with the boundary conditions

9i =0 or di-=0 atz=-H, (6d)
dz

dzi g 0, =0 or d + N',# =0 atz=0. (6e)
dz -i' ' dz g

Equations (6c) are solved numerically with the appropriate boundary conditions to
produce the vertical structure functions and eigenvalues, y'. The structure functions are
orthogonal and are normalized so that

1 °0
10 ,#, =a8. (6f

_H

This normalization means that the 0, are non-dimensional, while the 0, have dimensions of
length. We now have a complete orthonormal basis set for describing any quantity that
varies with depth. The fact that these modes are "tuned" to the depth-dependences of real
oceanographic variables makes them very useful, since it means expansions in terms of
these modes should converge rapidly. For our purposes in this section, it is not important
what assumptions were used to obtain the vertical structure equations in Eq. (6c).

Let's now expand conductivity in terms of the dynamical modes, viz.,

&(Z, 0 = s,(x,y,t) 0 8 (z), (7)
< agt) > int

where the i=0 (barotropic) mode has been dropped since the vertical average of & is zero.
Substituting this expression and those in Eq. (6a) into Eq. (5), and truncating after mode
number 1, yields

E;z ( .t) +sa., (8a)

Z" W "a,. +slay,, (9b)
im m
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The truncation in Eq. (8) is quite reasonable given the expected decrease in modal current
amplitudes with increasing mode number, and given the examples in Table 2 of mean s.,
calculated using Levitus (1982) data to compute structure functions and conductivity
profiles. Table 2 suggests that in polar oceans and in the mid-latitude Pacific the
conductivity-weighting contribution to the electric field is completely trivial. Using a year
of electric field and current meter mooring data, Luther et al. (1991) have shown the
validity of Eq. (5) in a region of the mid-latitude North Pacific with weak mean currents
and weak baroclinic eddy activity. In that location, the conductivity-weighting
contribution to the electric field was completely trivial.

Table 2. Expansion coefficients for conductivity from Eq. (7).

si

32.5 0N 42.50N 57.50S
Mode (i) Atlantic Pacific Atlantic

1 0.119 0.017 -0.004
2 -0.014 0.021 -0.009
3 -0.012 -0.002 -0.004
4 0.008 0.008 -0.001

On the other hand, in the mid-latitude North Atlantic, equal amplitudes of the barotropic
(1=0) and first baroclinic (i=1) modes of current imply a -12% relative contribution to the
electric field from the last term on the RHS of Eq. (5). Rossby (1987) found first
baroclinic mode amplitudes up to 70% greater than barotropic mode amplitudes in the
Gulf Stream at 730W, with very small second and third baroclinic mode amplitudes.
Consequently, in the Gulf Stream we can expect up to 20% conductivity-weighting
contributions to the electric field due to the first baroclinic mode of current. In fact, our
work with SYNOP data has shown occasional conductivity-weighting contributions up to
30%, although the mean contribution is <15%.

The variation of conductivity with depth in the oceans (e.g., Luther et al., 1991) suggests
dominance of the first baroclinic mode in the conductivity contribution to Eq. (5), which
allows the use of another integrating measurement, vertical acoustic travel time, to
estimate first baroclinic mode current and temperature amplitudes in order to remove the
conductivity contribution from the HEF. This procedure is outlined later.

Horizontal Electrometer (HEM) Versus Mooring Estimates of Transport

In deployments of seafloor HEMs to date, where comparison of HEM estimates of the
vertically averaged horizontal water velocity, < Ph (t) >, with current meter mooring
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estimates of the same quantity have been possible, the HEM estimates have proven to be
more accurate. These results provide an example of how measurement of an integrating
variable provides a more accurate estimation of oceanic behavior than can be
accomplished with a suite of conventional point measurements. In this specific case such
accuracy has significant importance to climate studies that rely on estimates of transport
(which is directly proportional to horizontal integrals of H< i, (t) > for determining the
world ocean's role in climate fluctuations.

The first HEM vs. mooring comparison of < h (t) > estimates was produced by Luther et
al. (1991) from data collected during BEMPEX, an experiment that deployed a large
number of HEMs and pressure gauges in the North Pacific to study direct atmospheric
forcing of gyre-scale eddies (the results of which are discussed further below). The
accuracy of the HEM estimates of < PA (t) > was corroborated by current estimates made
by reciprocal tomography, which is based on measuring reciprocal acoustic travel time
differences (Table 1). The inaccuracy of the current meter mooring estimates was
attributed primarily to stalling of the current meter rotors in the weak flows below 1000
meters depth. Another electrometer-mooring comparison presented below comes from the
opposite extreme for oceanic flows, i.e., from the Gulf Stream which has strong currents
at all depths so that rotor stalling is not expected to be a problem.

The Office of Naval Research provided funds for us (with Jean Filloux) to deploy four of
Filloux' seafloor HEMs (Filloux, 1987) next to current meter moorings during the last
year ('89-'90) of the SYNOP experim nt in the Gulf Stream. The HEMs were deployed in
an array centered around 37.50N, 68.5*W, at depths near 4700 m. Near each HEM were
sub-surface moorings deployed by J. Bane, T. Shay, R. Watts, and W. Johns, carrying
current meters at nominal depths of 400 m, 700 m, 1000 m and 3500 m.

The LHSs of Eqs. (5a) and (5b) were obtained from the HEM data using C=0.95, as per
estimates of C made by Sanford et al. (1985) in the western North Atlantic, and using an
appropriate estimate of F, for the time and location of the experiment, while the RHSs
were estimated from the mooring data. The latter estimation included extrapolation of Ph,
temperature and pressure to a fictitious nominal 100-m depth, conversion of pressure to
'depth,' and estimation of conductivity using temperatures and a climatological
temperature/salinity relation in an empirical formula. The currents and conductivities at the
four real and one "fictitious" instruments were trapezoidally integrated, taking into
account the time dependence of the depths of the instruments. The time series thus
obtained, representing opposite sides of Eq. (5), are !highly coherent, as shown in Figure 1.

While the coherence in Figure I is very encouraging, and the rms differences between the
estimates of the LHS and RHS of Eq. (5) are no larger for instance than what has been
considered very good agreement for testing schemes to remove the effects of mooring
motion from current meter data (e.g., Hogg, 1991; Cronin, 1991), examination of the
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individual time series (not shown) indicates that the LHS of Eq. (5) consistently has a
greater magnitude than the RHS. That there is a systematic under-estimation of current by
the mooring data, or an over-estimation by the HEM data, is most easily seen by casting
the data in terms of a Gulf Stream coordinate system, rather than a geographic coordinate
system, since the Gulf Stream position and direction vary with time.

Daily locations of the temperature front of the Gulf Stream (provided by R. Watts and W.
Johns) were determined from an array of Inverted Echo Sounders (IESs) that measure
VATT. These locations permitted estimation of the cross-stream positions of the moorings
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mooring-derived conductivity correction), all cast in terms of Gulf Stream coordinates.
The results for a single mooring are shown in Figure 2, along with the difference (error)
between the two estimates. (Note that the error is not dependent upon which side of Eq.
(5) we place the conductivity correction term.) The results in Figure 2 typify the
comparisons made at other HEM locations. Integrating the estimates in Figure 2 across
the stream results in a -30% higher estimate of total transport from the HEM than from
the mooring. This is certainly non-trivial.

Figure 2 shows good agreement between the estimates at distances farther "south" than
-60 km and farther "north" than 30 km from the north wall of the Gulf Stream. The
percentage difference between the estimates is not constant across the stream, implying
that the difference is not due to a calibration error of the HEM. While there are many
possible noises and small errors in the HEM data, none is known to result in an
overestimate of velocity. We believe the error arises in the current meter data and/or its
trapezoidal integration, but to date we have clearly identified only one source of error,
which by itself, however, is insufficient to account for all of the error in Figure 2.
Conductivity and temperature versus depth (CTD) data taken at this longitude by M. Hall
indicate that the extrapolation of currents to the near-surface underestimates the upper
ocean velocities (at and north of the maximum current) and the trapezoidal integration,
which implies linear interpolation between 1000 and 3500 m, underestimates the transport
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5W Figure 3. Polar stereograpbic
projection of the North Pacific
Ocean displaying seafloor
isobaths from 4000 to 5500 m,

0 and the locations of seafloor
W electrometers (solid circles) and

pressure gauges during
BEMPEX. Adjacent land
masses are also shown.

between 1000 and 3500 m (again, at and north of the maximum current). Error from the
trapezoidal integration is further suggested by the fact that the error time series is most
highly coherent with currents measured at 1000 m.

Observation of Atmospheric Forcing of Sub-Inertial Gyre-Scale Eddies

A good example of the use of measurements of integrating variables to explore a
phenomenon that defied unambiguou:s detection with traditional point measurements is the
Barotropic, Electromagnetic and Pressure Experiment (BEMPEX). BEMPEX employed
HEMs and bottom pressure gauges to specifically test theories (Frankignoul and Muller,
1979; Muller and Frankignoul, 1981) of stochastic forcing by the atmosphere of sub-
inertial gyre-scale motions in the ocean. BEMPEX, fielded by ourselves with Jean Filloux
and funded by the National Science Foundation, obtained seven HEF records and five
bottom pressure records from a two-dimensional array spanning 1000 km centered around
40'N, 163*W (Figure 3) and lasting 11 months beginning in August, 1986. Luther et al.
(1991) showed that the conductivity contribution (Eq. (5)) to the HEFs in BEMPEX was
trivial, so that the HEFs were directly proportional to vertically averaged (barotropic)
water velocity. In the following, we'll simply refer to the barotropic currents, rather than
the HEFs, obtained from the HEMs.

Four of the observational strategies discussed in the introduction were employed in the
design of BEMPEX: first, isolation, i.e., a region of the North Pacific was chosen for
which it could be reasonably assumed that other sources of energy for gyre-scale motions
(such as instabilities of strong "mean" currents) were weak; second, measurements of
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integrating variables, HEFs and Pb, were planned, because the theories predicted that the
oceanic response to atmospheric forcing would be essentially barotropic at the sub-inertial
periods (i.e., a few days to a few months) that we could observe reasonably well with a
one year record; third, a spatial array was planned for confirmation of theoretical
predictions of frequency-wavenumber relations; and, fourth, visual and graphical
comparisons with published model outputs of statistical parameters were planned. All
these process discrimination strategies were employed because previous experiments had
found that detection of atmospherically forced gyre-scale motions was difficult with
traditional point measurements of currents and because the point measurements showed
significant spatial inhomogeneities in what evidence of this phenomenon they did find.
Figure 4 is presented as an example of how the integrating variable HEF readily provided
evidence of atmospheric forcing, while at the same time measurements of currents in the
surface mixed layer did not, probably because of the superposition of many phenomena in
the mixed layer that have different, destructively interfering relationships with the surface
atmospheric variables.

The Frankignoul and Miller papers listed above were the first papers to present the
physics of atmospherically forced meso- and gyre-scale motions (which have the form of
linear Rossby waves) in the realistic light of stochastic forcing; and, most important to
empiricists, they presented testable hypotheses in the form of intervariable transfer and
coherence functions. One example of the latter in flat-bottomed basins is the prediction of
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Figure 4. (a) Contour plot of squared coherence ampiitude between BEMPEX zonal barotropic current
(measured at the solid square) and surface zonal wind stress (at each grid point), in the 10-15 day period
band. The wind stress was calculated (Chave et al., 1992b) from the Fleet Numerical Oceanography
Center's surface wind product. Only squared coherence amplitudes greater than the 95% level of no
significance are plotted. The large region of significant coherence indicates a strong relationship between
oceanic barotropic (depth-independent) zonal current and atmospheric forcing. (b) As for (a), except with
zonal current measured at nominally 73 m depth on a sub-surface mooring located near the electrometer
in (a). The lack of significant coherence is interpreted as a null result, providing no information on the
relatedness of oceanic near-surface zonal current and surface zonal winds.
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24 *Figure 5. Contour plot of squared coherence
amplitude between BEMPEX meridional

22 barotropic current (measured at the solid square)
"and surface wind stress curl (at each grid point),
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strong coherence between meridional currents and local wind stress curl at periods greater
than 0(100 days). The coherence arises from the dominance of a "Sverdrup" balance in
the vorticity conservation equation, in which the curl of the wind stress, which is a source
of vorticity, is balanced by a meridional advection of planetary vorticity. The coherence
does not occur at shorter periods due to destructive interference from many shorter scale
waves with non-trivial relative vorticity. For basins with gently sloping bottoms, a
"topographic Sverdrup" balance obtains between wind stress curl and oceanic currents
that are perpendicular to isopleths of potential vorticity,f/H, wheref is the Coriolis
parameter.

Evidence for the flat-bottom Sverdrup relation was found in BEMPEX (Fig. 5), and
evidence for the topographic Sverdrup relation was reported by Niiler and Koblinsky
(1985). But, the coherence shown in Figure 5 did not occur at any other period for that
instrument, nor was there Sverdrup-like coherence at any period for the other six HEMs.
Furthermore, a systematic search of North Pacific current meter records by Koblinsky et
al. (1989) produced no further examples of a topographic Sverdrup balance of oceanic
currents. The problem lies with the generation of short-scale Rossby waves by short-scale
topography as the wind stress curl drives the water across isopleths off/H (Anderson and
Corry, 1985; Cummins, 1991). The short-scale waves have substantial relative vorticity,
so that a Sverdrup balance usually does not dominate vorticity conservation until very
long periods. Cummins (1991) demonstrated, with a numerical model of the North Pacific
having realistic topography, that by spatially filtering out the shorter scale waves the
Sverdrup balance of the longer waves can be recovered. Following Cummins, we have
averaged the meridional currents from the five HEMs that comprised a coherent sub-array
in BEMPEX (Fig. 3). The resultant averaged meridional currents were coherent with wind
stress curl at all periods >10 days; Figure 6 shows the coherences from two period bands.

BEMPEX yielded many significant statistics (Chave et al., 1992b) with which to determine
the kinematics of the oceanic Rossby waves and with which to test Muller and
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Figure 6. Contour plot of squared coherence amplitude between averaged BEMPEX meridional barotropic
currents (measured at the 5 southernmost electrometers in Figure 3) and surface wind stress curl, in the
(left) 25-70 day band, and (right) 13-19 day band. A Sverdrup-like relationship (see text) is evident in
both period bands, and at all other periods greater than 10 days, for the averaged meridional barotropic
current. The solid square in both plots locates the nominal center of mass of the five electrometers.
Otherwise plotted as in Figure 4.

Frankignoul's (1981) predictions of frequency-dependent local coherence between various
oceanic and atmospheric variables. Non-zero coherences between oceanic variables and
non-local atmospheric variables, predicted by Brink (1989), were also unambiguously
observed (Luther et al., 1990; Chave et al., 1992b). No point measurements of currents
have yielded such clear evidence of direct atmospheric forcing of Rossby waves as has
been obtained with measurements of the integrating variables, HEF and Pb (the latter to be
discussed further below).

The example above, describing efforts to confirm the relatively simple physics inherent in
the Sverdrup balance, emphasizes the non-homogeneity of even the larger scale barotropic
motions in the ocean. Statistics estimated from observations of these phenomena are
correspondingly inhomogeneous. Any observational program or statistical analysis
technique, such as some of those highlighted at this workshop, must address these
inhomogeneities or risk misdirected inferences.

BOTTOM PRESSURE (Pb)

The complete relationship between pressure and water velocity in the oceans is not easily
represented by a simple integral. To lowest order, however, mid-latitude, sub-inertial
motions are geostrophic, i.e.,

h =- kxVhp, (9a)
fpA
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which permits the derivation of a simple relationship between pressure and the mass flux
per unit vertical distance (Pedlosky, 1987), viz.,

p(4) =fI k (pSih x di) + p(40 ), (9b)

where 4 and 4 are two points in a horizontal plane; d? is an incremental vector parallel to
an arbitary curve running from 4 to 4, so long as p(4) > p(40 ); p, = p. + O(z); and k is
the local upward unit vector.

Like HEFs, pressure is related to a spatial integral of horizontal velocity. Unlike HEFs, the
spatial distance over which the integral operates is somewhat arbitrary for pressure. But,
the greater the separation between members of a set of pressure measurements, the
weaker the correlation between them due to the substantial wavenumber bandwidth of
oceanic sub-inertial motions. Lack of coherence is usually fatal for process studies but is
often considered irrelevant for basin-wide studies of transport, for instance. The
integrating nature of pressure is in large part responsible for the successful mapping of the
semi-permanent oceanic flows with hydrographic (temperature and salinity versus depth)
data, from which pressure is calculated, because smaller scale variability tends to have a
weaker impact on pressure (which can be argued from either Eq. (9a) or Eq. (9b)).

In addition to discriminating against smaller scales of motion, bottom pressure
discriminates against baroclinic motions in favor of barotropic. This follows, for example,
from the vertical structure functions, O,(z), that are determined from Eq. (6). The
barotropic mode is independent of depth, while the baroclinic modes have their largest
amplitudes near the sea surface. If the barotropic and baroclinic modes have identical total
kinetic energy, integrated from the seafloor to the sea surface, then the barotropic mode
will have a larger amplitude at the seafloor than any of the baroclinic modes. Since the
barotropic and first baroclinic modes typically have similar kinetic energies (and the higher
modes are weaker), Pb (but not pressure in the upper ocean) tends to be dominated by
large-scale barotropic motions, even in regions of the oceans with energetic baroclinic
mesoscale motions such as the western North Atlantic. This latter point accounts for the
large horizontal correlation of sub-inertial Pb found over distances of hundreds of
kilometers in the western North Atlantic by Brown et al. (1975) during the Mid-Ocean
Dynamics Experiment, while horizontal correlations of currents and temperatures in the
same general area tend to zero when separations of 0(100 km) are attained (Owens,
1985).
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Considering the tendency of Pb to be more or less dominated by the large-scale sub-
inertial motions, we might expect that Pb in BEMPEX will be less affected by the short-
scale waves that made detection of the Sverdrup balance, for instance, so difficult with
point measurements of currents or even HEF-derived barotropic currents. In fact, we do
find from BEMPEX that Pb is much more coherent with surface atmospheric variables
(Fig. 7) than are the barotropic currents. And, the coherence between the pressure records
is greater than found for the barotropic currents, despite the larger separation of the
pressure gauges (Fig. 3). The extended regions of high squared coherence in Figure 7 are
not so much evidence of waves reaching the instrument from all over the Pacific as they
are evidence of high horizontal coherence in the surface atmospheric fields themselves.
The non-local maximum of the squared coherence in Figure 7 is expected from the
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1990), in accordance with the disappearance of freely propagating Rossby waves (MKiler
and Frankignoul, 1981).

Bottom pressure Pb is so dominated by the larger scale barotropic motions that all the Pb
records from BEMPEX display very similar coherence relationships with the atmospheric
variables, unlike the situation for the barotropic currents which exhibit more
inhomogeneities in their relationships with atmospheric variables. For Pb, atmospheric
forcing is clear at all sub-inertial frequencies,as seen by the graphs of maximum coherence
in Figure 8. The fact that the coherence of Pb with air pressure is frequently higher than its
coherence with wind stress curl (Fig. 8) does not implicate a particular forcing mechanism,
because the atmospheric variables are coherent among themselves, and there is more noise
in wind stress curl than in air pressure. A simple scaling argument shows (Philander, 1978)
that divergence of the surface (Ekman) boundary layer, produced by the curl of the wind
stress, should dominate all other forcing mechanisms at the time and space scales observed
in BEMPEX (Chave et al., 1992a).

COMBINING HEM AND IES MEASUREMENTS

The intent of this section is to demonstrate the great potential of combining measurements
of two integrating variables listed in Table 1. The combination of measurements of
horizontal electric fields (HEFs) and vertical acoustic travel times (VATTs) can provide
estimates of (1) volume transport per unit width, (2) the gravest vertical structure (i.e.,

barotropic and first baroclinic modes) of the horizontal currents, and (3) the total heat flux
(using the gravest vertical structures of the currents and temperature). Because seafloor
HEMs and IESs are inexpensive to make and deploy compared to current meter moorings,
it is not unreasonable to envision the deployment of large arrays of HEMs and IESs for
both dynamical process studies and the accumulation of transport time series for climate
studies. That most of the ocean's low frequency structure and variability can thereby be
observed from the seafloor using integrating variables is quite remarkable.

The VATT measured by an IES is

T=2 -•c, (10)
-H C

where H is the bottom profile, and c = c(zt) is the speed of sound. Potential small errors
in the interpretation of VATT in terms of the simple relation in Eq. (10) have been
enumerated by Watts and Rossby (1977).
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Ivirst Baroclinic Displacement Mode Amplitude

Consider temperature, T, salinity, S, and pressure, P, as state variables, so
c(i,t) = c(T(Y,t),S(7,t),P(I,t)). Following Pickart and Watts (1990), we idealize
variations in T and S as perturbations on a base profile which varies only with z (pressure
is not perturbed since it is essentially the integration variable), therefore

T(z,t) = T(z + C(z,t)) (11)

and similarly for S, where QI << jzj by assumption We now expand C in terms of
displacement modes per Eq. (6), such that

C(z,t) = i"qj(t) Oi(z), (12)
i=l

where the qj are non-dimensional since the e, have dimensions of length. Substituting Eq.
(12) into the perturbation forms of T and S, and truncating after mode 1, the sound
velocity can be written

c(z,t) = c[T(z +q0 1 ),S(z +q,0, ), P(z)]. (13)

After the basic state profiles are chosen, numerical evaluation of c based on its empirical
dependence on T, S and P, using different values for qI, leads to a functional relationship
between T and q, (Pickart and Watts, 1990), which can be inverted to yield the amplitude
of the first baroclinic displacement mode for any measured VATT. In practice, since the
depth is never known precisely enough, in situ profiles of T and S must be taken (by CTD
or XBT) while the IES is deployed in order to calibrate the VATT. Pickart and Watts
(1990) have shown evidence that the relationship between T and ql in Eq. (13) is not
sensitive to the choice of basic state profile of S (or buoyancy frequency, N, used in Eq.
(6)), although they do note that the choice of basic state T profile is important, and a
climatological mean T profile is inadequate in frontal regions such as the Gulf Stream.

The strong (weak) dependence of VATT on the first (other) baroclinic mode for mid-
latitude hydrographic profiles has been documented by Watts and Rossby (1977) and
Pickart and Watts (! 990). (Also, Hall, 1986, and Pickart and Watts, 1990, have shown
with current meter :1a;t& that the first baroclinic mode dominates the vertical velocity,
hence also the vertic•i displacement, in the Gulf Stream.) In the tropics, however, second
baroclinic mode variability makes a non-trivial contribution to the VATT and cannot be
ignored (Garzoli and Katz, 1981). In what follows, we are assuming the application is at
mid- to high-latitudes.
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First Barodinic Current Mode Amplitude

Departing from previous authors, we develop an expression for the amplitude of the first
baroclinic mode of current as follows. Under the hydrostatic and geostrophic
approximations,

f = k X V. p. (14)
& P.

Let there be small perturbations of p as per Eq. (11), so that

25--= -jL L--P k x V, . (
&• fp,, dT

Substituting the modal expansions for Ph and ý (see Eqs. (6a) and (12)) in Eq. (15),
applying the second relation in Eq. (6c), and truncating after mode I yields an expression
for the amplitudes of the first baroclinic current modes, viz.,

akj. -- kxVhq,, (16)

f
where y' is the first baroclinic mode eigenvalue determined from Eq. (6). Note that none

of the physical assumptions leading to Eq. (16), except the modal truncation, is more

severe than is typically used to estimate relative or absolute (P spiral) currents from

hydrographic data or to estimate cross-Gulf Stream profiles of current (and transport,
after upward extrapolations) from single moorings (e.g., Hogg, 1992).

Analysis of the combined HEF and VATT datasets from the SYNOP experiment is in its
early stages, but we can show a simple preliminary comparison of two derivations of one

horizontal component of ih.I in Figure 9a. Rather than using observed VATTs to estimate

first mode displacement from Eq. (16), we simply assumed that the difference of the
measured VATTs from two lESs is proportional to the first mode current amplitude, then
estimated the constant of proportionality by least squares. The result is the dotted curve in
Figure 9a. The solid curve in Figure 9a is an average of the first mode current amplitudes
from three moorings, two at the endpoints, and one close to, the line running between the
two lESs. The agreement between the curves is certainly encouraging.

Volume Transport Per Unit Width

Our estimate of volume transport per unit width is simply !h.0 from Eq. (8) times the

depth, H. To solve Eq. (8), we need estimates of s, and IkI. The latter are obtained from

the lESs by Eq. (16). The former are obtained by reconstructing a time-dependent
conductivity profile (using IES-derived estimates of q, in an expression for conductivity
similar to that for sound speed in Eq. (13)), which is then decomposed according to Eq.
(7).
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Figure 9. (a) TES (dotted curve) and mooring estimates (see text) of one component of the vector

ampltud* of the first barocinic mode of horiýontal current, i!a. (b) HEMfIES (dotted curve) and
mooring estimates (see text) of one component of the vector amplitude of the barotropic mode of
horizontal current, 11.0. Data for both plots were taken during the SYNOP experiment in the Gulf Stream
at nominally 6WW. Ordinate units are m/sec.

As in Figure 9a, a quick estimate of that component of 1,.o parallel to I.,. shown in Figure

9a, is presented as the dotted curve in Figure 9b. The IES-derived estimate of Ih., in

Figure 9a was used in Eq. (8) with a climatological mean Sl. An average of the data from
two HEMs (deployed near the IESs) was used in Eq. (8) as well. The only calibration
employed was that for the first mode amplitude described above. The solid curve in Figure
9b is an average of barotropic mode current amplitudes from the same three moorings
used in Figure 9a.

[Note that the comparison in Figure 9b is not directly relatable to the HEM-mooring
comparison of transport estimates discussed previously, and evidenced by Figures 1 and 2,
because Figure 9b only shows one of the two horizontal components of i,.0, and Figure

9b is necessarily derived from data spanning about 50 km, whereas the data for the prior
comparison were all obtained at a single geographic location.]

Current Prorfies and Heat Flux

The large vertical scale currents, P, (z,t), are reconstructed by adding 'ho and

1,,# (z).The heat flux is readily obtained from this reconstructed current profile and a

S. . .. . . . . .. .. .. . .. ... .. . .. .. . . . ... .. ... . . . .. . .. .. . .. .. . .. . . . . . . . . . . . .. . . . . . .. . .. . . . . . ... .. . . . .. .....
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reconstructed potential temperature profile, following Eqs. (11) and (12) truncated after
mode 1.

Summary of Some Oceanic Variables Derivable from HEFs and VATrJ

An ideal array would result in at least three lESs situated around each HEM. (Note that
this does not mean that three times as many lESs are deployed as HEMs.) After choosing
appropriate basic state temperature, T(z), and salinity, S (z), profiles, preferably from
coincident CTD profiles rather than climatological mean profiles, the following are
estimated:

q,(t), for each IES (see Eq. (13)) and subsequent discussion);

4nt) -1 , •q(t), for them IESs;m •,

T. (z), the basic state potential temperature profile, from the equations of state;

T, (zt) = T, (z +, (tO (z));

a(z), the basic state conductivity profile, from the equations of state; and

a(z,t) = -a(z + 4 (t)0 1 (z)).

Then the amplitudes of the first baroclinic modes of horizontal current are estimated from
Eq. (16), viz.,

a1.l =-"kxV,,q,
f

where the eigenvalue y' is obtained from solving Eq. (6) with a basic state buoyancy
profile, N 2 (z), derived from the equations of state using T(z) and S(z). The barotropic
modal amplitudes follow from Eq. 8, viz.,

E',(t)
a,•0 = -sla,.l

_y. = Et °l

where s, is obtained from Eq. (7), using o(z,t) from above.

Finally, we arrive at estimates of the following oceanic quantities:

. Volume transport per unit width = H il0;
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"* Horizontal current profiles, Ph(z,t) = ,.o +i,# 1 (z); and

"* Un-normalized heat transport per unit width = Jp.C, Ph(z.t)7 (z.t)dz,
-H

where Cp is the specific heat of seawater at constant pressure.

CONCLUSIONS

The ability to observe variables (such as those listed in Table 1) that are natural spatial
integrals of water motion or state properties in the oceans provides a useful, yet
underutilized, strategy for process discrimination in field experiments. For those situations
when observation of an integral quantity, like volume transport, is the desired end result,
integrating variables are likely to yield more accurate results than point measurements of
currents or state properties, as the one example presented above indicates. Integrating
variables should also be more useful than point measurements for validation of numerical
models of large-scale processes, because these variables in the ocean are not
"contaminated" by short-scale processes that are not simulated in the models.

Specific estimation of statistics from integrating variables, examples of which were shown
previously, demonstrate that even large-scale oceanic processes with the simplest physics
exhibit significant spatial inhomogeneities. Any modelling effort, observational program,
or statistical analysis technique, such as some of those highlighted at this workshop, must
address these inhomogeneit'es or risk misdirected inferences.
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1. INTRODUCTION

The useful information in a signal is usually carried by both its frequency content and its
time evolution. If we consider only the time representation, we do not know the spectrum,
whereas the Fourier spectral representation does not give information on the time of
occurrence of each frequency. A more appropriate representation should combine these
two complementary descriptions. This is true in particular for turbulent signals, especially
those presenting bursts or some intermittent, quasi-singular behaviours. The uncertainty
principle precludes analysis of the signal from both sides of the Fourier transform at the
same time because of the condition At-Av > I (normalized information cell). Therefore it is
aiways a compromise: either good time resolution At but loss of spectral resolution Av,
which is the case when we sample a signal by convolving it with a Dirac comb (Fig. la), or
good spectral resolution Av but loss of time resolution At, which is the case with the
Fourier transform (Fig. lb). These two transforms are the most commonly used in practice
because they allow construction of orthogonal bases onto which the signal can be
projected for analysis and eventual computation.

In order to improve time resolution while using the Fourier transform, Gabor (1946) has
proposed the windowed Fourier transform, which consists of convolving the signal with a
set of Fourier modes localized in a Gaussian envelope of constant width ao (Fig. I c). This
transform allows then a time-frequency decomposition of the signal at a given scale a0,
which is kept fixed. But unfortunately, as shown by Balian (1981), the bases constructed
with such windowed Fourier modes cannot be orthogonal. More recently, Grossmann and
Morlet (1984, 1985) have devised a new transform, the so-called wavelet transform,
which consists of convolving the signal with a set of affine functions all presenting the
same frequency vo; the family of analysing wavelets AV.,b is obtained by dilation and
translation of a given function W presenting at least one oscillation. The wavelet transform
allows therefore a time-scale decomposition of the signal at a given frequency v0, which is
kept fixed. Actually the wavelet transform realizes the best compromise of the uncertainty
principle, because it adapts the time-frequency resolution At.Av to each scale a. In fact it
gives a good spectral resolution Av with a limited time resolution At in the large scales,
but also gives a good time localization At with a limited spectral resolution Av in the small
scales (Fig. I d). The continuous wavelet transform has been extended to n dimensions by
Murenzi (1989).
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Figure 1. Comparison between different types of transforms.
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In 1985 Meyer, while trying to prove the impossibility of constructing orthogonal bases,
as Balian had earlier done for the case of the windowed Fourier transform, was surprised
to discover an orthogonal wavelet basis built with spline functions, now called the Meyer-
Lemarie wavelets (Lemarie and Meyer, 1986). In fact the Haar orthogonal basis, which
had been proposed in 1909, is now recognized as the first orthogonal wavelet basis
known, but the functions it uses are not regular, which drastically limits its application. In
practice one likes to build orthogonal wavelet bases using functions having a prescribed
regularity to provide enough spectral decay depending on the application. In particular,
following Meyer's work, Daubechies (1988) has proposed new orthogonal wavelet bases
built with compactly supported functions of prescribed regularity defined by discrete
quadratic mirror filters (QMF) of different lengths, the longer the filter, the more regular
the associated functions. Mallat (1989) has devised a fast algorithm to compute the
orthogonal wavelet transform using wavelets defined by QMF; it has been used in
particular to devise more efficient techniques for numerical analysis (Beylkin, Coifinan,
and Rokhlin, 1992). Then, more recently, Malvar (1990), Coifman and Meyer (1991)
found a new kind of window of variable width, which allows the construction of
orthogonal adaptative local cosine bases. The elementary functions of such bases are then
parametrized by their position b, their scale a (width of the window), and their
wavenumber k (proportional to the number of oscillations inside each window). In the
same spirit, Coifman et al. (1990), Wickerhauser (1990), and Coifman, Meyer, and
Wickerhauser (1992) have proposed the so called wavelet packets which, similarly to
compactly supported wavelets, are wavepackets of prescribed regularity defined by
discrete QMF, from which one can construct orthogonal bases. A review of the different
types of wavelet transforms and their applications to analysis and computation of turbulent
flows in 2D and 3D is given in Farge (1992ab).

2. THE CONTINUOUS WAVELET TRANSFORM

The only condition a function VI(x) E L2(9t), real or complex-valued, should satisfy to be
called a wavelet is the admissibility condition:

c 2j) = I V(k)I < dk (1)

with

y(k)= Jf(x)e-&-dx. (2)

If W is integrable, this condition implies that the wavelet has a zero mean:

J'y(x)dx = 0 or •y= 0. (3)
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In practice one also wishes the wavelet to be as localized as possible on both sides in
Fourier transform, namely that

I V(x)i < 1 (4)

and

i +IkkOI< (5)

with k being the frequency of the wavelet and n as large as possible.

Figure 2 shows examples of the most commonly used wavelets: the Marr wavelet (Fig.
2a), also called the Mexican hat, a real-valued function used for the isotropic continuous
wavelet transform, the Morlet wavelet (Fig. 2b), a complex-valued function used for the
non-isotropic continuous wavelet transform, the Meyer-Lemari6 wavelet (Fig. 2c), and the
Daubechies wavelet (Figs. 2d,2e), real-valued functions used to build orthogonal bases.

For several applications, in particular to study fractals, one also wishes the wavelet to have
a good regularity, namely that fy(k) decays rapidly near zero or, equivalently, that the
wavelet has enough cancellations such as

fw V(x)x.dx = o
S(6)

with n as large as possible.

Then, after having chosen the so-called 'mother wavelet' xV, one generates the family of
wavelets 'Ib, a(x), by continuously translating the 'mother wavelet' V along the signal b
and continuously dilating it to all accessible scales a, which gives

T'..WX = 1 (x-b (7)
N(a) a)

with N(a) a normalization coefficient equal, either to a12 if one wishes the squared
modulus of the wavelet coefficients to correspond to an energy density (L2 norm), or to a
if one uses the wavelet coefficients to analyze the local regularity of the signal (LV norm).

The continuous wavelet analysis of the function f(x) E L2(9t) is then the inner product
betweenftx) and the set of all translated and dilated wavelets 'b,a(X), such as

f(b,a) = f f(x)-'. dx, (8)
where * indicates the complex conjugate.
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a. Mart wavelet (M an hat)

b. Morlet wavelet

Wa").J *bJ - s "

Q. Mey•e-Lemarid wavelet

d. Daubechies wavelet (cancellation n-2)

e. Daubechies wavelet (cancellation n=7)

Figure 2. Most commonly used wavelets: (let) the functions and (right) their Fourier trnsforms.
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The wavelet transform therefore projects the L2(9() space of finite energy functions into

the L2(9tXR±+) space of wavelet coefficients having a measure da db/a2, which is the Haar
measure associated to the affine group. Figure 3 shows five examples of wavelet analysis
of academic signals: a Dirac spike (Fig. 3a), the superposition of two cosine functions
having different frequencies (Fig. 3b), the superposition of two cosine functions of very
different amplitudes (Fig. 3c), a tchirp (Fig. 3d), a Gaussian white noise (Fig. 3e), and
finally a tchirp in the presence of a strong noise (Fig. 30.

From the wawelet coefficients f(b,a), one is able to reconstruct the functionflx) using the
inverse wa let transform, defined as

f(x) = c--• J of (ba)TPba.(x) dadb (9)

with

C ( ) = 2 7rfI_ (k)I dkF

a finite valued coefficient given by the admissibility condition (1).

One verifies that the wavelet transform conserves energy (as the Plancherel identity for the
Fourier transform), namely that

fI.f(x)ldx= 1 jjlf(ba)I dadb (10)

If the functionf(x) belongs to the functional space L2 (9t), and if the wavelet is regular
enough and therefore well localized in Fourier space (5), the wavelet analysis may be
interpreted as a pass-band filter with dk/k being constant (Fig. I d):

f(b,a) = 21Na ff(k) Vl(ak)eIkdk. (11)

The extension of the continuous wavelet transform to analyze signals in n dimensions has
been done by Murenzi (1989), considering in this case the Euclidean group with dilations.
The generation of the wavelet family O,.b (x) is obtained by translation (vector b),

dilation (parameter a) and rotation (corresponding to the operator r defined in 90), such
as

t,'6 (1) = N(a)- (a-'r-' ( -b)). (12)
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the signal

the wavelet coefficient
modulus

the wavelet coefficient
phase

a. Dirac spike

Ij A , I ) , •

b. The superposition of two cosine functions having
different frequencies
cos(t) + cos(1.68t)

c. The superposition of two cosine functions of very
diflerent amplitudes
cos(t) + 0.02 cos(21)

Figure 3. Wavelet transforms of several academic signals using a Mo1et wavelet (continued nt Page).
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the signal [

the wavelet coefficient
modulus

the wavelet coefficient
phase

d. A tchirp sin(t 2)

e. Gaussian white noise

f. A tchirp sin(t 2) in presence of a strong noise

Figure 3. (continued) Wavelet transforms of several academic signals using a Morlet wavelet. [We have
used the code TecLet ID (copyright Science & Tec.)]
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For qt2 , r is the rotation matrix:
cos 8O -os (13)

sn0 (13)8

with 0 the rotation angle.

In n dimensions the admissibility condition becomes

= (2xr FF<(k <. (14)

The analysis and synthesis are then

f(a,r,b)A =f...•ff (i) I *,,(1)d!i (15)

f (1 =C-- J f' f--"-..f- (ar ) ,$j(X)dd . (16)
___ (, _ _ (16)

The energy conservationt still holds:

F , F 2  -- - 2 dadrd'bj'.ylf(3)~a•C - 0 '...F 11(a,r,b)i a-,(17
v) 0  o(17)

Holschneider (1988) has shown that one can reconstruct the functionAx) from its wavelet
coefficients f(b,a) by using any other function O(x), which verifies a modified
admissibility condition such as

- (k)j (k)-<oo. (18)
Iki

This, for instance, allows us to reconstructAx) by a simple summation of all wavelet
coefficients along the verticals b = constant. This in fact corresponds to using a Dirac
function as the function O(x) to reconstruct the signal, which gives

f(x) 1 C fj') f-(xa)'d (19)

with

c(*)= v "F ((kf)F < .0.
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3. PROPERTIES OF THE CONTINUOUS WAVELET TRANSFORM

3.1 Covariance by Translation and Dilation

One property of the continuous wavelet transform, which is lost in the case of the
orthogonal wavelet transform, is its covariance, by both translation, i.e., shift by x0

W[f(x- ;]=1(b- ,a) (20)

with Wthe continuous wavelet transform operator, and dilation, i.e., under scale changes
by a factor X

P {f4} +4b-b 4) (21)
3.2 Linearity

The continuous wavelet transform is a linear transform; therefore we have the following

superposition principle:

W[4,(x) + tP.(x)] = 0,(ba)+ 1(ba) (22)

with a and b two arbitrary constants.

3.3 Locality in Both Space and Scale

The localization of wavelets by both position b and scale a yields both values from the
wavelet coefficients. This is not the case with the Fourier coefficients because the basis
functions are nonlocal: a given Fourier coefficient therefore depends on the behaviour of
the whole signal. On the contrary a given wavelet coefficient f(b0,aj) does not depend on
the value of the signal outside the so called 'influence cone' localized in b0 + Ab/ a, with
Ab depending on the support of the wavelet (Fig. 4a). Likewise the wavelet coefficients at
a given scale ao depend only on the spectral behaviour of the signal in the bandwidth
(kn/ao,kna 0 o] with k., and kmax given by the support of , (Fig. 4b). The support of
Sis defined as the region where W is larger than a given value, because wavelet W has at
least an exponential decay.

3.4 Characterization of the Local Regularity of a Function

One of the most useful properties of the wavelet transform in analyzing turbulent flows is
the fact that the local scaling of the wavelet coefficients computed in LI norm, i.e., with
the normalization N(a)=a in (7), allows us to characterize the regularity of the signal
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a.the influence cone attached to;x

b. the spectral band attached to 'wavenumber Ic0

Figure 4. Locality in wavelet coefficient space.
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(Holschneider 1988) and (Jaffard 1989). Thus, ifdm f/dx"W exists, i.e., iff is m times
continuously differentiable in x0, then

V(xzo,a), -d" (23)

when a tends to 0.

Iff c Aa(X3), the space of Lipschitz functions having exponent -I<a1<l, which are
continuous functions non differentiable in x0 , such that

f(x)-f(xo)•clCx-4xo1 (24)

with constant C>O. Then

i(xo,a) - a' (25)

when a tends to 0.

Thus the behaviour of the wavelet coefficients f(x0,a) at x0 in the limit a--- 0 measures
the local regularity of the functionf in x0, which is given by the slope of the modulus of
(xo,a) represented in log-log coordinates. For instance, the wavelet coefficients computed
in norm Ll of a function presenting a Lipschitz singularity a in x0 will diverge in the very
small scale limit (Fig. 5a), while those of a function which is regular in x0 will tend to zero
in the same limit (Fig. 5b).

4. ANALYSIS OF TWO-DIMENSIONAL TURBULENT FLOWS

"In the last decade we have experienced a conceptual shift in our view of turbulence. For
flows with strong velocity shear... or other organizing characteristics, many now feel that
the spectral description has inhibited fundamental progress. The next "El Dorado" lies in
the mathematical understanding of coherent structures in weakly dissipative fluids: the
formation, evolution and interaction of metastable vortex-like solutions of nonlinear
partial differential equations..." Norman Zabusky (1984).

As Norman Zabusky stated, it is essential before modelling turbulent flows to understand
the dynamical role of coherent structures and analyze their contribution to the different
nonlinear interactions. Because the Fourier modes contain nonlocal information, we are
unable to discriminate the role of coherent structures and we cannot separate the coherent
structures from the rest of the flow. However, this local spectral analysis becomes possible
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a. f is a function presenting a Lipschit~z singularity a in x0

b.f is a function that is regular in x0

"V4

Figure 5. Analysis of the local regularity of a functionf in xO (given by the slope of the modulus of
a(xi, a) represented in log-log coordinates).
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when using the wavelet transform and with it we can devise new types of diagnostics.
After defining them, we will apply them to analyze some vorticity fields corresponding to
long-time evolution of a forced two-dimensional flow, computed with a resolution 1282.

4.1 The Wavelet Coefficients

If we denote the position as b, the scale as a, and the angle as 0, the wavelet coefficients
computed in LP norm are

f (aOb = 0, • f(7r)T*',(1)d 2X (26)

with
=cosO -sin0G

''.*(7r) = N(a)- V(a-1r-(i-b)), and r = cos 0 (27)
isine cose (27

If N(a) = a'/2, the wavelet coefficients are in L2 norm and the squared wavelet coefficients
correspond to the local energy density of the signal at location b, scale a and direction 0.
If N(a) = a, the wavelet coefficients are in LV norm and in this case the local scaling of the
wavelet coefficients gives information on the local regularity, or the Lipschitz exponent in
the case of discontinuities, of the signal at location b, scale a and direction 0.

In Figure 6 we show the ID continuous wavelet analysis along a cut done in a two-
dimensional turbulent vorticity field. The wavelet coefficients are computed, either in L2

norm (Fig. 6a), or in Ll norm (Fig. 6b), using the Morlet wavelet with k0=5.

In Figure 7 we show the 2D continuous wavelet analysis of a two-dimensional turbulent
vorticity field. The wavelet coefficients are computed in L2 norm at three different scales,
namely 32 pixels (Fig. 7b), 16 pixels (Fig. 7c), and 2 pixels (Fig. 7d), using the isotropic
Marr wavelet (in this case, there is no angular dependence of the wavelet coefficients
resulting from to the wavelet isotropy).

4.2 The Intermittency Factor

The intermittency factor is given by the wavelet coefficients renormalized by the space
averaged energy at each scale, such that

If(a,O,E)1I (a, b) =: 2.1fa G (2) ~ 2b/a (28)__ jja8+~(~ "~

I~~f f I I I I I IIIa' IU• "
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It gives information on the space variance of the energy spectrum, namely if I (a,b)= I the field is
homogeneous and there is no space variance of the energy at scale a. If I(a,b6) is large, the field is
intermittent, namely all the energy contribution at scale a comes from a few very excited regions,
while the rest of the field has little energy at this scale.

Figure 8 shows the intermittency factor computed at three different scales, namely 32
pixels (Fig. 8b), 8 pixels (Fig. 8c), and 2 pixels (Fig. 8d) using the isotropic Man" wavelet
(there is no angular dependence of the wavelet coefficients resulting from the wavelet
isotropy in this case).

4.3 The Local Energy Spectrum

The local energy spectrum is defined from the wavelet coefficients, such that
e2xj ~ 2

E(,,gf) J0 I(aO'b°)dOj
EaA) = 2 (29)

Figure 9 shows the local energy spectra (Fig. 9d) computed by integrating in space the
Marr wavelet coefficients after segmenting the vorticity field (Fig. 9a) into three different
regions using the Weiss criterium (Weiss 1981): the elliptical region corresponding to the
cores of the coherent structures (Fig. 9b), the parabolic region corresponding to the shear
layers at the periphery of the coherent structures (Fig. 9c), and the hyperbolic region
corresponding to the vorticity filaments of the incoherent background flow. We observe
that the elliptic region scales as k6, the parabolic region as k-4, while the hyperbolic region
scales as k-3 . Therefore the more coherent the region is, the steeper its spectrum, whereas
an incoherent region, such as the background flow, is much more homogeneous and has a
flatter spectrum--similar to noise.

5. FILTERING OF TWO-DIMENSIONAL TURBULENT FLOWS
USING CONTINUOUS WAVELETS

Because the wavelet transform is invertible it is always possible to select a subset of the
coefficients and reconstruct a filtered version of the field from them. We propose several
filtering techniques to extract coherent structures from the background vorticity in two-
dimensional turbulent flows. The first one consists of discarding all wavelet coefficients
outside the influence cones (Fig. 4a) attached to the local maxima of the vorticity field that
corresponds to the coherent structures' cores. The second method consists of discarding
all wavelet coefficients smaller than a given threshold that depends on the quantity of
enstrophy we want to retain in the filtered vorticity field.

Figure 10 shows the extraction of one coherent structure, done by filtering all wavelet
coefficients outside the influence cone attached to the center of this coherent structure,
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AI,

[1i I

a. the vorticity field to be analyzed !

I b. large scale, 32 pixels (min 0, max 79)

d. small scale, 2 pixels (min 0, max 44)

Figure 8. The intermittency factor computed using the Mar wavelet.
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~ a. The complete vorticity field
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b. The elliptical region c. The parabolic region d. The hyperbolic region
corresponding to the coherent corresponding to the shear corresponding to the vorticity

structures layers at the periphery of the filaments of the incoherent
coherent structures background flow

to'.

e. The corresponding energy
10", , , • ,•er lJto spectra

Figure 9. Local energy spectra computed from the wavelet coefficients after segmenting the vorticity field
into three different regions.
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a. the complete vorticity field

b. the coherent structure alone

SPL_'CRE .','STROPHIE c. the vorticity field without the coherent structure
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I O'o d. the energy spectra of the three previous fields

Figure 10. Extraction of one coherent structure, done by filtering all wavelet coefficients outside the

influence cone attached to the center of this coherent structure, before computing the inverse wavelet

transform.
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before computing the inverse wavelet transform. We display the complete vorticity field
(Fig. IOa), the coherent structure alone (Fig. lOb), the vorticity field without the coherent
structure (Fig. IOc), and the energy spectra of the three previous fields (Fig. IOd).

Figure 11 shows the extraction of the 40 most excited coherent structures, done by
filtering all wavelet coefficients outside the influence cones attached to the centers of these
coherent structures, before computing the inverse wavelet transform. We display the
complete vorticity field (Fig. I la), the 40 coherent structures alone (Fig. 1 I b), the
vorticity field without the coherent structures (Fig. I Ic), and the energy spectra of the
three previous fields (Fig. lId).

Figure 12 shows the extraction of all excited coherent structures, done by filtering all
wavelet coefficients smaller than a given threshold and then computing the inverse wavelet
transform. We display the complete vorticity field (Fig. 12a), the coherent structures alone
(Fig. 12b), the vorticity field without the coherent structures (Fig. 12c), and the energy
spectra of the three previous fields (Fig. 12d).

As seen with the local energy spectra,these filtering techniques show again that the
spectral behaviour depends on the region of the flow, with a tendency to scale around k-6

near the cores of the coherent structures, between k-4 and k-5 at their periphery, and
around k-3 in the background.

6. COMPRESSION OF TWO-DIMENSIONAL TURBULENT FLOWS
USING WAVELET PACKETS

Wavelet packets represent a "•mily of orthogonal bases that unifies wavelets with Dirac,
Fourier and wavepacket funcuons, affording increased flexibility in tiling the information
plane, because now each element of the basis is parametrized independently in position b,
scale a and wavenumber k (cf. Coifman et al., 1992). For a given signal sampled on N
points the wavelet packet algorithm generates 2N possible orthogonal bases and then
selects the one that minimizes the number of coefficients having significant contributions
to the total signal. In this sense, the wavelet packet algorithm defines the most efficient
basis, so called the Best Basis, upon which to expand a given signal. If the flow is
dominated by point vortices, then it is optimally represented using the Dirac grid point
basis, and the output of the wavelet packet algorithm will reflect this. On the contrary, if
the flow is dominated by waves, then it is optimally represented using the Fourier basis,
and the output of the wavelet packet algorithm will again reflect this. If the flow behaviour
is in between these two extreme situations, other bases will be more appropriate and the
wavelet packet algorithm will give us the Best Basis in which the vorticity field can be
represented with the smallest number of significant coefficients. The computation of the
Best Basis for a signal sampled on N points is done in N.log2N operations, while the

'construction of the signal from its projection onto the Best Basis is done in N
operations.
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Figure 12. Extraction o all excited coherent structues done by filtering ill wavelet coefficients smaller
tha a given thresold and then computing the binerse wavele transform.
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Figure 13 shows the compression of a two-dimensional vorticity field using its wavelet
packet coefficients with three different compression ratios. For a compression by 2 (Fig.
13a) we split the field into the 50% strongest wavelet packet coefficients and the 500/
weakest wavelet packet coefficients. Then for a compression by 20 (Fig. 13b) we split the
field into the 5% strongest wavelet packet coefficients and the 95% weakest wavelet
packet coefficients, and for a compression by 200 (Fig. 13c) we split the field into the
0.5% strongest wavelet packet coefficients and the 99.5% weakest wavelet packet
coefficients. For each of the three compression ratios we display the uncompressed field
with its energy spectrum, the compressed field with its energy spectrum, and the discarded
field with its energy spectrum. These results have been obtained in collaboration with
Meyer, Pascal and Wickerhauser and are extensively discussed in Farge et al. (1992).

With these compression techniques we find as before that the spectral behaviour depends on the
region of the flow we analyze, with a tendency to scale around k-6 near the cores of the coherent
structures, around k-4 at their periphery, and around k-3 in the background.

7. CONCLUSION

Nowadays turbulence is commonly viewed from one of two alternative perspectives,
depending upon which side of the Fourier transform one looks from. In physical space, we
observe coherent vortices and wonder if there is universality in their structure and
interactions. In Fourier space, we see transfers of energy and enstrophy between different
scales of motion and ask, for example, if the slope of the energy spectrum is universal. The
selection of bases in which turbulence may be examined must be extended if these
perspectives are to be effectively reconciled. Through the use of wavelets and wavelet
packets, we have constructed a class of bases, which includes grid point and Fourier
representations as special cases, from which we select the basis which is optimal for a
given flow, namely the one which compresses the most the information while keeping
track of the behaviour of the flow in both space and scale.

With such a wavelet or wavelet packet representation we can compute a local energy
spectrum. Using the continuous wavelet transform, we have shown that different regions
of the flow present different slopes for the local energy spectrum. Clearly the Fourier
transform is unable to detect these different spectral behaviours which vary in space, while
the wavelet transform is here the appropriate tool. Typically we have observed that the
cores of the coherent structures, which correspond to the elliptic regions, scale as k-6, the
shear layers around the coherent structures, which correspond to the parabolic regions,
scale as k-4, while the vorticity filaments in the background, which correspond to the
hyperbolic regions, scale as k-3. From this result we infer that the variation of the Fourier
spectral slope we commonly observe for two-dimensional flows may be related to the
density of coherent structures which varies depending on the initial conditions and
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Figure 1 3a. Compression of a two-dimensional vorticity field using its wavelet packet coefficients,
compression by a factor 2; (top) the uncompressed field and its energy spectrum, (center left and lower
left) the compressed field and its energy spectrum, (center right and lower right) the discarded field and
its energy spectrum. The visualisation was done in collaboration with Jean-Francois Colonna.
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Figure 1 3b. Compression of a two-dimensional vortcity field using its wavelet packet coefficients,

compression by a factor 20; (top) the uncompressed field and its energy spectrum, (center left and lower
left) the compressed field and its energy spectrum, (center right and lower right) the discarded field and
its energy spectrum. The visualisation was done in collaboration with Jean-Francois Colonna.
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on the forcing. If this is true we may hope that the local scaling of the different regions
may be universal enough in order to be able to model their behaviour, each region then
having its own parametrization.

Using the orthogonal wavelet packet transform, we have shown that the significant
coefficients correspond to the coherent structures, while the weak coefficients correspond
to the vorticity filaments which are only passively advected by the coherent structures.
One possible application of the wavelet packet algorithm is to apply it from time to time
during a numerical simulation, in order to separate regions with highly active small scales,
which need a better grid resolution, from regions with inactive small scales, which do not
contribute much to the dynamics and can either be discarded or modelled. Indeed the
wavelet packet Best Basis seems to distinguish the low-dimensional, dynamically active
part of the flow from the high-dimensional, passive components. It gives us some hope of
drastically reducing the number of degrees of freedom necessary to the computation of
two-dimensional turbulent flows.
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THE NUMERICAL INVERSE SCATTERING TRANSFORM:
NONLINEAR FOURIER ANALYSIS AND
NONLINEAR FILTERING OF OCEANIC SURFACE WAVES

A. R. Osborne

Istituto di Fisica Generale dellUniversitA, Via Pietro Giuria 1, 10125 Torino, Italy

ABSTRACT

Nonlinear Fourier analysis is discussed as it arises from the exact spectral solution to
large classes of nonlinear wave equations which are integrable by the inverse scattering
transform (IST). The approach may be viewed as a generalization of the ordinary, linear
Fourier transform or Fourier series. Numerical methods are discussed which allow for
implementation of the approach as a tool for the time series analysis of oceanic wave
data. I specifically consider the case for shallow water, where integrable nonlinear wave
motion is governed by the Korteweg-deVries equation with periodic/quasi-periodic
boundary conditions. Numerical procedures given herein allow the computation of a
nonlinear Fourier series for a measured time series. The nonlinear oscillation modes of
KdV obey a linear superposition law, just as do the sine waves of a linear Fourier series.
However, the KdV basis functions themselves are highly nonlinear, undergo nonlinear
interactions with each other and are distinctly non sinusoidal. I analyze surface wave data
from the Adriatic Sea and apply the concept of nonlinear filtering to enhance
understanding of nonlinear interactions.

INTRODUCTION

This paper summarizes a new numerical approach for the nonlinear Fourier analysis
of space and time series of complex, nonlinear wave trains. The method, based upon the
(periodic/quasi-periodic) inverse scattering transform (IST), is a kind of nonlinear
generalization of the ordinary, linear Fourier transform. I focus on nonlinear wave motion
for shallow-water waves as governed by the Korteweg-deVries (KdV) equation. IST may
be exploited to determine the numerical inverse scattering transform (NIST) spectrum of
a measured or computed wave train which is assumed to be periodic (or quasi-periodic) in
space or in time. The approach may also be applied to numerically construct complex
solutions to the KdV equation. I build on previous successes in the application of the
periodic scattering transform to the analysis of computer generated or experimentally
measured data [Bishop et al., 1986; Osborne and Bergamasco, 1985, 1986; Osborne and
Segre, 1990; Terrones et al., 1990; Flesch et al., 1991; Osborne et al., 1991; Osborne,
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1991a, 1991b; McLaughlin and Schober, 1992; Osborne, 1993]. In particular I analyze
measured wave data obtained in the Adriatic Sea on a fixed offshore platform in 16.5 m
of water, about 10 km from Venice, Italy. This paper describes some of the recent work
done in collaboration with L. Cavaleri [Osborne et al., 1991; Osborne and Cavaleri,
1993]. It is hoped that the results of this paper will complement other recent work in the
propagation of nonlinear shallow water waves [Elgar and Guza, 1986].

THE KdV EQUATION AND PERIODIC INVERSE SCATTERING THEORY

The Kortweg-deVries equation describes (among many other physical applications)
the motion of small, finite-amplitude nonlinear wave trains in shallow water. KdV was
the first of many nonlinear wave equations to be completely integrated by what is now
called the inverse scattering transform [Zakharov et al., 1980; Ablowitz and Segur, 1981;
Dodd et al., 1982; Newell, 1985; Degasperis, 1991].

The dimensional form for the (space-like) KdV equation is given by [Whitham, 1974;
Miles, 1980]:

'7, + C. 77.. + a717+ ±1. = 0 (1)

where 17(x,t) is the wave amplitude as a function of space x and time t. For shallow
water wave motion the constant coefficients of KdV are given by c, = (gh)"',
cc = 3c. / 2h and P3 = coh 2 / 6. Eq. (1) has the linearized dispersion relation
o = cok - fik3; g is the acceleration of gravity, co is the linear phase speed, and h is the

water depth. Subscripts with respect to x and t refer to partial derivatives. KdV solves the
Cauchy problem: given the spatial behavior of the wave train at t = 0, tj(x,0), (1)
determines the motion for all space and time thereafter, q7(x,t). Here we use periodic
boundary conditions so that 77(x, t) = il(x + L, t), for L the spatial period of the wave
train.

The most common experimental situation is to record data as a function of time at a
single spatial location. The reasons are often economical, e.g., the measurement of time
series requires a single wave staff or pressure recorder; the measurement of space series
requires remote sensing capability. These considerations motivate the need to determine
the scattering transform of a time series, ir(O,t). To this end one may apply the time-like
KdV equation (TKdV) [Karpman, 1974; Arlowitz and Segur, 1981]:

17x +co'1, + a' 717, + fl' %l =0 (2)

where co'= 1/co, &' = -a / co2 and P3' = -fl / c0 ; (2) has the linearized dispersion relation
k = Co / Co + (p I/ C4) .o TKdV solves a boundary value problem: given the temporal
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evolution r/(0,t) at a fixed spatial location x 0 0, (2) determines the wave motion over all
space as a function of time, ql(x,t). Periodic boundary conditions (ql(x,t) = 77(x,t + T))
are assumed herein in order to be consistent with linear Fourier algorithms (discrete and
fast Fourier transforms). Due to recent advances in numerical methods TKdV may now
be routinely applied to the time series analysis of experimental data [Osborne, 1991 a;
Osborne et al., 1991; Osborne and Segre, 1990].

All solutions of (1) may be easily converted to all solutions of (2) by simple
transformations given elsewhere [Osborne, 1983; Osborne, 19931. Hence the scattering
transform of (2) may be easily expressed in terms of the scattering transform of (1). For
present purposes it is only necessary to note that given the IST for (1), the IST for (2)
may be easily determined. Therefore, I give herein only the mathematical development of
IST for (1).

According to the periodic inverse scattering transform the solution to the periodic
KdV equation (1) may be written as a linear superposition of nonlinearly interacting,
nonlinear waves called hyperelliptic functions, tj (x;xo,0):

N

afl(x,t) = -E, + [2pj(x;xo,t)- E2j - E21+] (3)
j=I

The constant parameter A = a / 6f/. This is the first of the so-called trace formulae for the
KdV equation [Dubrovin and Novikov, 1974; Flaschka and McLaughlin, 1976] and may
be interpreted as a kind of nonlinear Fourier series. The constant parameters E2j, E2j+1

are eigenvalues of the "main spectrum" of periodic theory as discussed in the next
section; x0 is an arbitrary base point in the interval 0 < x < L. The yu, are the nonlinear
oscillation modes of periodic KdV, i.e., they are analogous to the sine waves of linear
Fourier analysis. The ut spatially evolve according to the following system of coupled,
nonlinear, ordinary differential equations:

dp,-- 2iaR" 2(lU,) (4)
d x N " / j - k

kkl

where

2N+IR ju) =l (y, - Ek). (5)
k=I

The oa = ±1 are the signs of the square root of R(pu). The /j, dynamically evolve on

two-sheeted Riemann surfaces; the branch points connecting the surfaces are referred to
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as "band edges" and are denoted by the E2j and E2f+1 . The spatially and temporally
varying pj evolve inside an "open band," e.g., in the interval E2, _< Aj < E2,,,, and

oscillate between these limits as a function of x and t, as will be demonstrated graphically
below. When a p, reaches a band edge (eitbhr E2j or E2j+r) the sign a', changes and the

motion leaps to the other Riemann sheet. This fact, together with the strong nonlinear
coupling occurring among the yuj presented considerable difficulties for Osborne and
Segre [ 19901 in numerical integrations of (4). These difficulties have been largely
circumvented by the methods given herein for the time series analysis of nonlinear wave
trains.

The temporal evolution of the j, is given by the following differential equations:

d, = -2 [Ai(x, t) - 2pj 1 1 (6)

dtdx

where Aq(x,t) is given by (3). The space (4) and time (6) ODEs evolve the p1j(x,t) (the

nonlinear oscillation modes of KdV) and the nonlinear Fourier series (3) allows one to
construct general solutions to the KdV equation. In what follows I describe methods for
numerically computing the oscillation modes aj (x,0) at a particular instant of time, t = 0.

The requisite numerical methods are then christened nonlinear Fourier analysis
procedures for space or time series [Osborne, 1991 a].

Generally speaking I refer to the numerical determination of the main spectrum
(Es; 1 5 i ! 2N+1) and the auxiliary spectrum (,j (0,0), a, = ±+1; 1< j5 N) as the direct

scattering transform (see details in the Section below). The computation of the
hyperelliptic functions A, (x,t) as solutions of the nonlinear ODEs (4)-(6) and the

construction of solutions of the KdV equation by the trace formula (3) constitutes the
inverse scattering transform. Herein I (a) discuss new numerical procedures for obtaining
the direct scattering transform and (b) show that the inverse scattering transform as
obtained by numerical integration of (4)-(6) (e.g. as considered by Osborne and Segre
[1990]) can be replaced by a much simpler, more precise and faster algorithm.

THE PERIODIC INVERSE SCATTERING TRANSFORM

The spectral problem (the direct scattering transform) for KdV (1) is the Schroedinger
eigenvalue problem of quantum mechanics:

r+ [Xnl (x) + k2]V=O (k2 = E) (7)
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where 77(x) = r7(x,O) is the solution to the KdV equation (1) at an arbitrary time t = 0; k
is the spectral wavenumber. Periodic boundary conditions are assumed so that we take
T1(x, t) = 17(x + L,t) forL the period.

Details of the inverse scattering theory will not be given here, but may be found
elsewhere [Dubrovin and Novikov, 1974; Dubrovin, Matveev and Novikov 1976;
Flaschka and McLaughlin, 1976; McKean and Trubowitz, 1976]. For numerical purposes
it is appropriate to consider a basis of solutions (c, s) of (7) such that

ls(xo) s'(xL)) 0  J
The wronskian W(c, s) = 1 so that (c, s) is a basis set of (1). The matrix a carries the
solution of (1) from the point x to x + L:

Ic(x +L) c' (x +L)] alr, a,2][(cx) c'(x)(9
= I(9)

s(x + L) s' (x + L)) ,a 2l a 22 ks(x) s'(x))

a is often referred to as the monodromy matrix. This is the fundamental matrix of
periodic spectral theory for KdV; a contains all spectral information about KdV in the
wavenumber domain.

The so called main spectrum of KdV consists of eigenvalues Ei that correspond to the
Bloch eigenfunctions of the Schroedinger equation (7) for a particular period L. The
auxiliary spectrum is defined as the eigenvalues for which the eigenfunctions s(x) have
the fixed boundary conditions s(Xo+L) = s(x0 ) = 0. To this end one has these specific
spectral definitions:

main spectrum {Ee; 1 <_ i <_ 2N+ I): L(aj + a

auxiliary spectrum {pj;_1 5 j 5 N}: a2,(M) = 0 (10)

{ a,}= {sgn[auit(E1- a22(E)]E=,; 1•1 s N}.

The eigenvalues {E,;JIj; aj } constitute the direct scattering transform of a wave train of
N degrees of freedom, 1 _< i < 2N+1; 1 •1j! N. The inverse scattering transform, (3)-(6),
then allows for the construction of complex wave train solutions of the KdV equation.
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THE NUMERICAL ALGORITHM

The numerical search for the scattering eigenvalues _{E1;pj; o } suggests the need for

computing the derivatives of the matrix a4 with respect to the energy E. This is because

one normally uses a Newtonian numerical root-finding algorithm to determine the
eigenvalues. To achieve this goal, a matrix method for obtaining the evolution of the
eigenfunction V as a function of x and E for a particular wave train q (x,0) has been
developed. The key to this approach is the analytical estimation of derivatives of the
matrix elements with respect to E.

To this end the spectral equations are

V.~= -q V
(11)

V., = -q VIE - V

wherL the subscripts refer to differentiation with respect to x and E; q(x) = 17l (x) + E.

Writing (11) in four-vector notation and using a Taylor series expansion for the solution
to the scattering equations (11) one obtains

V(x + Ax) V(X)
v. (x + Ax) H V. (x) (12)

vE~ V (+ A) V XVz (x + Ax) V.E(x))

where

H =(T 0) (13)

Each element of H is a two-by-two matrix. The matrix 0 has zero for all its elements and
the other matices are given by:

= o(Kx (14)

,-Ksin(KAx) cos(i'Ax)(

and
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Axsin(rAx) Axcos(K'Ax) sin(wAx)
dT = 2K 2 K2 2K (1

TE - dE Axcos(KAx) + sin(KAx) Axsin(cAx) 1 (15)

2 2 K 2K 1

for K" = (q)' 2 = (Ar(x) + E)Y'. While i- may be either real or imaginary, the matrix TE is
always real with determinant 1. This property is exploited in the numerical algorithm
below.

As in previous numerical problems of this type I assume the wave train 17(x) has the

form of a piece wise constant function with 2M partitions on the periodic interval (0, L),
where the discretization interval is Ax = L / 2M [Osborne, 1991 a]. Each partition has
wave amplitude 77,(1: n : 2M) which is associated with a discrete value of the spatial
variable x. = nAx. The four-by-four scattering matrix M can then be defined:

-M

M= "IH(r/.,Ax) (16)
M=M-1

The initial conditions of the basis (c, s) at the base point xo are given by

cS(X) (0')LE(XiL K E X.1 (17)c' E(Xo.) t0) tSE (X.) 0

From the definition of the matrix a one has

lj c(x +L) c' (x +L)f c(x) c'(x)y(18
s(x + L) s' (x + L) s(x) s' (x))

Thus at x. one finds

-(a,, + a22) =(MI I+ M 22 ) (19)
2 2

a 21 = Ml12 (20)
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while the derivatives are given by

•(M31 + M42) (1
1 .(a 1, + )=(M, + a22 2) - (21)

L = M32 (22)

Implementation of the Numerical Algorithm

Because " = (;tt7(x,O) + k 2)12 can be either real or imaginary, but not complex, the
matrix H is always real. This result allows implementation of an algorithm which is
entirely real. The following relations have been used in the computer code:

{ cos(k' Ax) if K2 > 0T = T = cosh(k'Ax) ifix9<0 (23)

sin(x Ax) if t.2 > 0

= (24){sinh(jeAx) if K2 <0

=-iesin(ieAx) ifK"2 2>0
T21 I t sinh(i' Ax) if c 2 <0 (25)

where

ie In r+P 1= 41 K 21 =(26)

and analogously for the matrix TE.
The reconstruction of complex solutions of the KdV equation by (3) (as well as

nonlinear filtering) are carried out by computing the auxiliary spectra pj(xo = x.) for the
2M different base points x.= x M...x1, x2, ... xMu.. The approach is formally called base
point iteration and is carried out by computing 2M different monodromy matrices (16)
which differ from each other by a horizontal shift Ax in the wave train 11.. This
procedure arises from the following similarity transformation which is easily seen from
(16):

M(x,, E) = H( 1,., E)M(x,, E)H( rh, E)-' (27)



NONLINEAR FOURIER ANALYSIS AND FILTERING 169

The latter expression relates the matrix M(x.+1 , E) at a base point x,+, to the previously
computed matrix M(x,,, E) at the base point x. for a particular value of E = k2 . Values of
the auxiliary spectra (j (xj)) for each xn are computed from the matrices M(x., E).
Knowledge of the auxiliary spectra at every point x,1 allows reconstruction of the wave
train TI(x.) via a discrete version of (3):

N

Ai(x) = -E, + 2y (x,)-E 2, - E-2 +j (28)
j=l

for n = -M... 1,2,...M-1. This is a finite-term nonlinear generalization of a Fourier series
for the discrete wave train i7(xj). As indicated by the notation, each nonlinear oscillation
mode (yJ implicitly depends upon the associated wavenumber k, of the mode. The kj are
theoretically given by the simple relation kj = jAk,Ak = 2ri/ L; surprisingly these are
exactly the same as for the linear Fourier transform, provided that periodicity is assumed.
The IST spectrum then consists of the widths of the open bands of the Floquet
discriminant, a, = (E2,+1 - E2 ) / 2A , graphed as a function of kj (orfj for a time series).

EXAMPLE OF NONLINEAR FOURIER ANALYSIS

To illustrate the numerical inverse scattering transform in the analysis of nonlinear
wave trains, in Figure 1 I give the numerical construction of a three degree-of-freedom
wave train. In panel (a) are the hyperelliptic functions Uj,j = 6, 9, 11; in the present case
the pj are constructed from a rather arbitrary selection of the eigenvalues E2j, E2j+1 . The

linear superposition of the three oscillation modes gives the solution to KdV as shown in
the upper part of panel (a). Note that the hyperelliptic oscillation modes are highly non-
sinusoidal in appearance due to nonlinear effects. In panel (b) are shown the amplitudes
of the linear Fourier modes (solid line) and of the three hyperelliptic modes (vertical
lines). Comparing these results one concludes that only three nonlinear oscillation modes
(three u,(x)) are required to describe the motion, while instead the number of linear
Fourier modes is quite large (- 50) for this example.

ANALYSIS OF MEASURED ADRIATIC SEA WAVETRAINS

I extend results recently discussed by Osborne et al. [1991] and Osborne and Cavaleri
[1993] with regard to the analysis of nonlinear wave data obtained in a measurement
program in the Adriatic Sea about 10 km from Venice, Italy. The data were recorded in
16.5 m of water on the offshore research platform of the Italian National Research
Council (Consiglio Nazionale delle Ricerche) in a region where the bottom slope is rather
small, e.g., - 1/1000. A typical measured wave train, a 500 point time series with
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Figure 1. Synthesis of a wave train solution to the KdV equation. In (a) three hyperelliptic function
oscillation modes are linearly superposed to give the solution to KdV. In (b) are graphed the linear Fourier
transform of the wave train (solid line) and the three nonlinear Fourier amplitudes (the aj, vertical lines).
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temporal discretization At = 1 sec, is shown in Figure 2(a). A data set was selected for
which most of the wave energy was in the dominant direction of propagation; only 3% of
the wave energy was perpendicular to this direction. This insured that the waves were
essentially unidirectional, a requirement of the KdV equation and consequently of the
inverse scattering transform analysis given herein. The significant wave height (average
of the highest one third waves) is Hs = 2.9 m and the dominant period is Td = 10.2 sec.
The linear Fourier spectrum is shown in Figure 2(b); the -results are quite typical of
measured ocean wave spectra, e.g., a central peak (around the dominant period) decays
rapidly at low frequency and has a power law spectrum at high frequencies.

It is worthwhile briefly indicating how one determines whether the KdV inverse
scattering transform is appropriate for analyzing a particular measured wave train. Clearly
if the physics of the wave motion is not that of the KdV equation, then the results of an
IST analysis are of dubious value. Three of the more important tests for ascertaining the
applicability of KdV for a particular data set are [Osborne and Cavaleri, 19931 (1)
Determine whether the data lie in the KdV region of the Ursell number diagram
[Osborne 1993]. (2) Determine if most of the wave energy lies to the left of
fKdv = 1.36c. / 21rh in the frequency domain. (3) Determine if there is little directional
spreading in the wave field. For the data analyzed herein all three criteria are met rather
well. The results of the first test are discussed in detail in Osborne and Cavaleri [1993],
e.g. the (time-like) Ursell number, Ur = 2gHsTd214h 2 - 8; hence, the Adriatic Sea waves
may be judged to be mildly nonlinear. The second test is verified in Figures 3 and 4.
Since only three percent of the wave energy is normal to the dominant wave direction, the
last criterion is also satisfied to good accuracy. The above constraints on the selection of
experimental data given herein may be considered to be rather conservative; efforts are
underway to extend the applicability of the present approach to less severely restricted
data sets [Osborne, 19931.

I now discuss the nonlinear Fourier analysis of the measured wave train; the Floquet
discriminant is shown in Figure 3(a); this constitutes a graph of the half-trace of the
monodromy matrix (A = (a,, + a2) / 2, the first of equations (10)) as a function of
frequency squared, E = (7rf) 2. Note that the fluctuations in A(E) are quite large so that a
logarithmic scale has been used to graph the function outside the vertical range
(-1 < A < 1) (the graph is instead linear inside this interval). The spectrum is seen to
divide itself into two widely-separated regions of activity corresponding to solitons (on
the left) and radiation components (on the right). Since the soliton part of the Floquet
diagram is not easily visible (it is too dense in the domain E - f2), this part of the
spectrum has been graphed separately in Figure 3(b). Here the large oscillations to the left
represent the soliton modes in the spectrum. The vertical dotted line is the so-called
reference level [Osborne and Bergamasco, 1986], which represents the level upon which
the solitons propagate in physical space.
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Figure 2. Time series measured in the Adriatic Sea in 16.5 m water depth (a). In (b) the linear Fourier
transform of the measured time series is shown.
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Figure 3. Floquet diagram of measured time series in Figure 2(a) is shown in (a). The Floquet diagram in
(a) has been expanded in the soliton (low frequency) part of the spectrum in (b) to reveal the presence of
the reference level and the solitons themselves.
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Figure 4. The scattering transform spectrum of the measured time series in Figure 2(a). Shown are the
solitons (vertical arrows) and the radiation spectrum (solid line). In (b) is the nonlinear spectral index.
Values of the index near I indicate strong nonlinear behavior.
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The IST spectrum is given in Figure 4(a) where the spectral components are graphed
as a function of frequency, just as for the linear Fourier transform. The nonlinear Fourier
amplitudes, aj = (E2j÷I - E2j) / 2A, are the amplitudes of the open bands in the Floquet

spectrum of Figure 3(b). The radiation spectrum is shown as a solid curve on the right,
while the solitons are displayed on the left as vertical arrows. About 7% of the wave
energy lies in the soliton part of the spectrum. It is useful to compare the amplitudes of
the nonlinear spectrum in Figure 4(a) with those of the linear spectrum in Figure 2(b).
Note that the radiation components in the scattering transform spectrum are smaller than
those for the linear Fourier spectrum. Physically this occurs because part of the energy
has been transferred from the radiation spectrum to the soliton spectrum, due to the
presence of nonlinear effects, by the inverse scattering transform.

The nonlinear spectral index is ,hown in Figure 4(b). This parameter indicates just
how nonlinear the spectral components are at a particular frequency [Osborne and
Bergamasco, 1986]. Since the index indicates strong nonlinear behavior for values near
1, two frequency ranges are of interest in this analysis. The first is at low frequency,
signaling the presence of solitons in the spectrum. The second is near the peak of the
radiative part of the wave train. Nonlinear interactions are quite strong in these two
regions. It is of interest to explore these particular cases using nonlinear filtering, as
discussed below.

The next step in the analysis is to compute the hyperelliptic functions (nonlinear
oscillation modes) of the data by base point iteration. The first 100 nonlinear modes are
given in Figure 5(a). The horizontal lines separate each mode from its neighbor on the
vertical scale, which has units of squared frequency (these are the units of the horizontal
coordinate of the Floquet diagram in Figure 3). While the scale of the nonlinear modes is
rather small in this figure, it is still easily seen that they are distinctly non sinusoidal,
especially near the larger radiation modes. The solitons are not easily observable at the
scale of this figure, but these will be graphed below in such a way as to render them
visible. In order to illustrate IST and its associated linear superposition law, I now show
how the linear superposition of the nonlinear oscillation modes reconstructs the wave
train in Figure 5(b). I have summed nonlinear components only out to 0.2 Hz (the
Nyquist frequency is 0.5 Hz), but a comparison of Figure 5(b) with the measured wave
train Figure 2(a), indicates that most of the spectral energy has been included. High
frequencies have been essentially filtered out (above 0.2 Hz) in the reconstruction of
Figure 5(b). This example constitutes my first application of the concept of nonlinear
filtering.

I now consider two further applications of filtering using the nonlinear oscillation
modes. The first is with regard to the soliton part of the spectrum, the second is with
regard to the most nonlinear part of the radiation spectrum. In Figure 6 1 show the
hyperelliptic modes in the soliton part of the spectrum; the vertical scale has been
expanded to allow easy visualization of the soliton m-functions (this corrects the situation
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Figure 5. (a) The hyperelliptic oscillation modes for the measured wave train in Figure 2(a). The latter are
computed in the frequency range 0.0-0.2 Hz. The linear superposition of these modes gives the wave train
shown in (b), which results by low pass filtering the measured wave train. This is the first example of a
nonlinearly filtered wave train using the periodic inverse scattering transform.
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Figure 6. The nonlinear oscillation modes in the soliton part of the spectrum (a). In (b) the solitons are
constructed by a linear superposition of these nonlinear modes. The solitons are seen to lie beneath the
measured wave train and to propagate on a 'reference level' which lies below the mean water level.
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soliton train is shown in Figure 6(b), where the original wave train is also superposed on
the figure. As noted previously [Osborne et al., 19911 the soliton contribution to the wave
train consists of a long, low-amplitude signal lying beneath the overlying, narrow-banded
wave train, which is dominated by the radiation modes. Again I find that the solitons tend
to lie beneath the maxima of the local wave groups; this topic is discussed in detail
elsewhere [Osborne and Cavaleri, 1993]. It is impossible to stress how important the
nonlinear filtering process is to the understanding of the soliton dynamics; I know of no
other method for extracting them from an arbitrary oceanic wave train of the type studied
here.

The most nonlinear of the radiation modes have also been filtered from the measured
wave train. These results are shown in Figures 7 and 8. Figure 7(a) shows the hyper-
elliptic modes centered near the peak of the spectrum, where the nonlinear spectral index
is nearly one, in the frequency range 0.094-0.108 Hz. Figure 7(b) gives the modes over a
somewhat larger frequency range extending from 0.094-0.122 Hz. These ranges are
indicated on the nonlinear spectral index graphed in Figure 4(b). Scrutiny of the nonlinear
modes in Figure 7 reveals that they are clearly not sinusoidal and that phase locking plays
an important role in their dynamics (details are discussed in [Osborne and Cavaleri,
1993]). It is important to note the main differences in the nonlinear filtering process
applied in the present paper and the usual one for linear Fourier analysis: (1) here I use
the spectral index to select the most nonlinear parts of the spectrum to study and (2) the
filtering process is fully nonlinear and often requires an iterative process [Osborne, 1993].
The regions that have a large spectral index are inverted to allow reconstruction and study
of the wave trains in the most nonlinear parts of the IST spectrum; linear superposition of
these modes give the wave trains shown in Figure 8(a, b). These wave trains are highly
nonlinear and are not generally represented by the linear Fourier transform. For reference
I also show the soliton part of the wave train, superposed on the nonlinear radiation
modes in Figures 8(a, b). Figure 8(b) therefore represents the most nonlinear
contributions (as seen in the time domain) to the measured wave train in Figure 2(a).

SUMMARY AND CONCLUSIONS

It is worth pointing out that in the originally measured wave train (Figure 2(a)), the
soliton components are obscured by the radiation modes, e.g. solitons reside in the
nonlinear spectrum, but they are not directly visible due to the presence of the energetic
radiation components. The soliton dynamics are physically significant, but not directly
visible by an observer of the measured wave train. Nevertheless, using the numerical
methods described herein, we are able to locate the solitons and to explore their
dynamics. This constitutes an exercise in nonlinear filtering. Returning to the spectrum in
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Figure 7. Hyperelliptic functions in the most nonlinear part of the radiation spectrum as indicated on
Figure 4(b) and in the text (a). In (b) are the modes for an expanded region of the radiation spectrum, again
defined in Figure 4(b).
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Figure 8. (a) Sum of the nonlinear oscillation modes in Figure 7(a). (b) The sum of the nonlinear modes
shown in Figure 7(b). Both of these are examples of the application of nonlinear filtering by the inverse
scattering transform as developcd in this paper.
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Figure 4(a) one can think of each component (as a function of frequency) as contributing
to the nonlinear Fourier series (28). By deleting the terms corresponding to the radiation
modes, and then summing the remaining terms for the soliton part of the spectrum, one
obtains only the contributions that the solitons make to the measured nonlinear wave
train. One finds a long, low-amplitude train, consisting of five nonlinearly interacting
solitons. We have therefore, using the numerical inverse scattering transform as a tool for
nonlinear filtering, found the solitons hidden in a sea of background radiation. An
important physical result is that the solitons tend to be phase locked beneath the maxima
of the wave packets. I am personally convinced that this fact provides an important clue
to the eventual understanding of the behavior of nonlinear wave dynamics in the Ursell
number regime under investigation. Theoretical understanding of these results is,
however, still lacking.

Another result of the application of nonlinear filtering to the analysis of the Adriatic
Sea data is that related to the construction of the nonlinear, narrow-banded wave trains in
Figure 8. Since the nonlinear modes are clearly not sinusoidal (see Fig. 7), the
effect of nonlinear interactions amongst these closely separated components is evidently
rather important. These results are given here for the first time and are entirely new. A
further surprising result is that the nonlinear spectral index can be near 1 for the radiation
spectrum as well as for the solitons (Fig. 4(b)). Large nonlinear interactions in the
radiation components is evidently another new result, yet to be fully explored. Complete
understanding of the influence of these nonlinear effects on the physics of narrow-band
wave motions, particularly with regard to phase locking, is a topic of future research.
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ABSTRACT

The basic method of principal component analysis is relatively well understood by
physical oceanographers. Some less generally understood ideas involve significance test-
ing and rotation of the basis functions. Also, a number of other analysis techniques re-
lated to principal component analysis can be more easily understood by using it as a start-
ing point. Such techniques include factor analysis, extended empirical orthogonal func-
tion analysis, canonical correlation analysis, and complex empirical orthogonal function
analysis, for example.

The basic calculations comprising principal component analysis are presented, and
significance testing and rotation are discussed. Pacific sea level data are used to illustrate
these techniques. The paper concludes with a discussion of various extensions to the
basic technique and an evaluation of the usefulness of the extensions.

INTRODUCTION

It is important to establish at the outset that this paper is not intended to be a com-
prehensive review of principal component analysis (PCA) or its applications. It is similar-
ly not intended as a detailed review of the other techniques that will be discussed as re-
lated to PCA, or as extensions of it. Rather, the intention of this paper is to briefly review
the PCA technique in order to establish a common frame of reference and to then point
out how several other commonly used techniques can be viewed as applications of PCA
to a more general dataset. The reason for doing this is to place all these techniques in a
sensible framework, to point out where they overlap, and to give viewpoints, my own
and others, as to the relative merits of the various techniques. I have not avoided giving
the results of my own experience with the various techniques, but I have tried to clearly
identify my opinions in order that the reader can decide what should be ignored.

For the reader interested in a more comprehensive teatnmnt of PCA, and of factor
analysis (FA), which is much more commonly used in some fields other than oceanog-
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raphy and meteorology, several books are recommended. Preisendorfer (1988) provides
an extensive bibliography of applications and source material, and also gives additional
detail on nearly everything discussed in this paper. The book by Harman (1976) on FA,
while somewhat dated and primarily written from the point of view of workers in
psychology, is an excellent source for insight about rotation methods. A book written for
geologists (Joreskog et al., 1976) is also well done and appears to be commonly used by
oceanographers. Finally, a very recent book by Reyment and Joreskog (1993), which I
have not yet seen, is noteworthy because of the inclusion of an appendix that includes a
set of electronically available routines for the MATLAB programming environment.

The organization of the paper is as follows. The first section describes the basic for-
mulation of PCA. This section includes a comparison, due to Preisendorfer (1988), of FA
and linear regression analysis (LRA) that helps to illustrate why the technique is so
powerful and widely useful. This section continues with a discussion of the problem of
significance testing and the technique of rotation. Both of these latter topics should be un-
derstood by any user of PCA. Throughout this section, examples are given using a
Pacific monthly mean sea level anomaly dataset. All of the discussion in this section
deals with the PCA of a scalar-valued dataset consisting of time series at a set of stations.
The following section treats the extension of PCA to the analysis of vector-valued data
and to the analysis of propagating signals. Finally, I will examine the relationship of PCA
to canonical correlation analysis (CCA), which is used for the simultaneous analysis of
more than one data field.

THE BASICS OF PRINCIPAL COMPONENT ANALYSIS

Basic Computations

We will consider first a very straightforward application of PCA to a set of time
series collected at a set of stations. As an example of this I will use sea level time series
collected at 46 stations in the Pacific Ocean (Figure 1). The temporal means are removed
from the time series at each station, which are also corrected for atmospheric pressure
and the mean seasonal cycle. The PCA model for this dataset can be written

K

h(s,t) = 7ak(t)ek(s) (1)
k=1

where s is the station index, t is the time, and K is equal to the number of stations.

The variance-covariance matrix for the dataset h(s,t), which I will refer to simply as
the variance matrix, is a special case of what Preisendorfer (1988) calls the scatter matrix,
and is written
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Figure 1: Pacific sea level stations used in the PCA example. There are 46 stations, each with a monthly
mean time series spanning 1975 to 1990. The monthly mean values are corrected for atmospheric pressure
and the mean seasonal cycle before the PCA is performed. Data gaps are interpolated.

S(s,s') = j/h(s,t)h(s',t) (2)
t

Since the variance matrix is real-valued and symmetric, it has real cigenvalues and eigen-
vectors. The eigenvalues, which are generally sorted into decreasing order, give the
amount of variance in the original dataset that is accounted for by the associated eigen-
vector and its time history function. The eigenvectors are mutually orthogonal and form
the basis set for the expansion shown in Eq. (1). The associated time history functions,
which are also mutually orthogonal, are computed from the original data and the eigen-
vectors as

K

ak(t) = •_h(s,Oe,(s) (3)
ns=l

where I have assumed that the eigenvectors, e,.(s), are normalized to unit variance, and
the time history functions, ak(t), are allowed to carry the variance.
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Figure 2 shows the results of applying the PCA technique to the Pacific sea level
dataset. The eigenvectors associated with the two largest eigenvalues are interpreted as
space maps, and the analogous time history functions can be interpreted as modulating
the space maps and indicating when that particular space map's pattern is strongly ex-
pressed in the original datasct. In this particular case the two functions are both as-
sociated with the El Nifio/Southern Oscillation (ENSO) events in the tropical Pacific. The
space maps show this clearly. The time history functions, however, are somewhat non-
descript, but this will be discussed more later.

Relationship to Linear Regression Analysis and Factor Analysis

In order to better understand what the PCA expansion defined in Eq. (1) does, it is in-
structive to compare it to a linear regression analysis (LRA) and a factor analysis (FA). If
we truncate the PCA and FA expansions (criteria for doing this are discussed in the next
section), then these various expansions can be written

M

h(s,t) = .ak(t)ek(s) + 8(s,t) PCA (4a)
m=1

M

h(s,t) = Y*Q((t)J$k(s) + E(s,) LRA (4b)
ni=l

M

h(s,t) = YfkQ)~i(S) + v(s,t) FA (4c)
in=l

In these expansions, ek, 03k, and X* are thought of in the present context as the basis func-
tions; ak, 9(k, andfk are the amplitude functions; and 8k, ek, and Vk are the residual noise
terms.

These expansions look very similar, but actually there are quite different underlying
assumptions. For the LRA, the basis functions are specified a priori, and the time history
functions are fit, typically by a least squares criterion, in order that the defined basis func-
tions account for the maximum amount of variance. In the PCA analysis, the data are al-
lowed to choose their own basis set under the criterion that each function must explain
the maximum variance, subject to the additional constraint that each succeeding function
be orthogonal to all the preceding ones. The truncated PCA expansion is therefore maxi-
mally efficient in accounting for the variance of the original dataset with the fewest basis
functions, but there is a cost. Namely, there is no guarantee that the eigenfunctions cor-
respond to any physically meaningful modes of variability of the original data. LRA, on
the other hand, can be constructed using basis functions that are defined from a priori
knowledge of the dynamics of the system being studied.
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The strengths and weaknesses of FA as compared to LRA are similar to those of
PCA. However, when compared to PCA, the FA case is more subtle. Basically, while
PCA is a completely objective technique that needs only the original dataset to proceed,
the FA treats the number of factors used in the expansion and the residual noise term,
vk(s,), as unknowns, and thus is an underdetermined system. Many suggestions exist for
ways to close the system (Harman, 1976), but the technique remains somewhat subjec-
tive. It requires specification of a priori information that is usually not trivial to provide.
Preisendorfer (1988) discusses these issues at some length and claims that FA is the "con-
ceptually deeper" of the two techniques. I have never been able to convince myself that
the additional subjectivity associated with FA provides much advantage over PCA.

Significance testing

The full PCA expansion defined by Eq. (1) has the exact same information content as
the original dataset. It is rare, however, that the original data are free of noise, and one
must therefore assume that many, if not most, of the PCA functions simply represent
noise. The question naturally arises, then, of how to select the functions that may repre-
sent signal, in order that they can be further analyzed. Preisendorfer (1988) is particularly
good on this topic of selection rules for PCA, and the interested reader should consult
that text on this topic. Harman (1976) provides an interesting historical perspective on
the development of older selection rules that have largely been superseded.

The basic idea behind all of the selection rules is quite simple. The functions are com-
pared to those that would result from data drawn from a specific noise model, and those
that are not consistent with such noise data are deemed worthy of further study as signals
with possible geophysical significance. The selection rules discussed by Preisendorfer
(1988) fall into three broad categories: variance dominant, time history, and space map
rules. N.B., the use of the words "time" and "space" are simply convenient and do not
restrict the application of these techniques to time series data at stations, such as that used
in my Pacific sea level example.

The variance dominant rules are probably the most commonly used selection rules in
oceanography and meteorology. Recall that the eigenvalues of the scatter matrix are
equal to the amount of variance of the original dataset accounted for by the associated
eigenvector (space map), and amplitude function (time history). Figure 3 shows the 46
eigenvalues obtained for the Pacific sea level dataset after placing them in decreasing
order. Also shown on this figure are the eigenvalue curves obtained by the application of
three different variance dominant selection rules. The first, labeled Rule N, is based on
the assumption that the original time series are simply noise, which is uncorrelated from
station to station. To apply this rule, 100 such datasets are generated and the eigenvalues
are computed and placed in descending order. Then the 95th percentile is found and
plotted. Eigenvalues from the actual dataset that fall above this curve are deemed as un-
likely to result from a dataset consisting of only noise. In the case of the Pacific sea level
dataset, only the first two functions are thus selected.
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Figure 3: The 46 eigenvalues from the PCA of the Pacific sea level dataset are shown as open circles. Also
shown are the results of applying three difference selection rules (see text for details).

One complication worth considering in the application of Rule N to geophysical data
is the fact that most time series of such data are not well-modeled by a white noise
model, but have significant serial correlation due to oversampling. One method that I
have used to deal with this problem is to define a noise model that consists of "red"
noise. I characterize the model according to the approximate spectral slope obtained from
a Fourier analysis of the noise series. Figure 4 shows the result of applying Rule N to the
Pacific sea level dataset using several values for the spectral slope. Clearly, quite dif-
ferent conclusions about the significance of the low order functions would be reached
depending on which model is chosen. Anf-1 noise model is appropriate for the Pacific
sea level dataset, and this was in fact the noise model used in generating the Rule N
curve in Figure 3.

Variance dominant criteria other than Rule N are discussed by Preisendorfer (1988),
but Rule N appears to be the most widely used selection rule of this class. Two other
selection rules are shown on Figure 3 that are of historical interest. The scree test is a sub-
jective test that requires the analyst to select the point on the eigenvalue curve where the
curve begins to tend up more sharply at lower orders. This is an experientially based test.
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Figure 4: Rule N applied to Pacific sea level data using various models for the noise.

The second test, labeled the "Gunman" test, is objective. This test computes the average
eigenvalue and defines any that are larger than this value to be of possible interest. The
rationale here is simply that the selected functions explain more than an average amount
of variance. These latter two tests tend to be less conservative than Rule N, at least when

the 95th percentile is used in that test. These less conservative tests have some value in
the rotation problem that is discussed in the next section.

Time history and space map rules are less commonly used than variance dominant
rules, but this is probably due to the simplicity of the the latter rather than to any inherent
advantage in them. The time history rules work by examining the time history function
and testing it for low frequency variability. Several ways of doing this are described by

Preisendorfer (1988). The space map rules are similar, but work on the eigenfunctions
(space maps) and look for coherent "spatial" patterns. These rules should probably be
more widely used, particularly since they should be able to detect functions that map to a
geophysical signal that does not dominate the variance of the dataset but can be identified

by coherent temporal or spatial patterns. An example is seen in Barnett (1977).
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Another area of concern for significance testing is that of placing confidence limits
on the time series and space maps themselves. For example, how large do signals in the
time series or space maps shown in Figure 2 have to be before there is reasonable con-
fidence that they represent real modes of variation in the actual data? Unfortunately, the
variance dominant rules used to select the functions cannot answer such questions. To the
best of my knowledge, this is an unsolved problem, although there has been some
progress in this area using bootstrap techniques (D. Chelton, pers. comm.).

Rotation

If one thinks of the eigenvectors as a set of orthogonal basis vectors for expanding
the original dataset, then it is easy to imagine geometrically "rotating" this basis set.
Another way to view this rotation is to imagine replacing the original set of basis vectors
with a set that consists of linear combinations of the original set. In the rotated frame, the
basis vectors can still be orthogonal, but the amplitude functions will now be correlated.

But why would one want to rotate a perfectly good set of basis functions anyway? If
the primary purpose of the PCA is to compress the original dataset into a few functions
that still capture a large portion of the variability of the data, then there is no need for
rotation. The PCA frame is, by construction, the most efficient description of the
variance possible. If one desires to interpret the individual functions in physical terms,
however, then this efficiency can be a problem.

Imagine that the original data consist of a number of distinct, but not necessarily or-
thogonal and unrelated, modes of variation. In order to explain the most variance pos-
sible, the PCA technique will return linear combinations of these modes - not the modes
themselves. The hope of the rotation technique is that by relaxing the requirement that
the basis functions are maximally efficient at explaining variance, then it may be possible
to obtain modes that more closely resemble the natural modes of the dataset. In fact, it is
often claimed that non-rotated PCA frames should not be interpreted physically at all.

Harman (1976) is the best reference I have found for discussion of rotations, although
it is written in the context of FA. There are a large number of rotation techniques, which
can be separated into orthogonal and oblique rotations. Both sets of rotations relax the re-
quirement that the functions be maximally efficient at explaining variance, but or-
thogonal rotations preserve the orthogonality between the basis vectors while oblique
rotations do not require even this. Orthogonal rotations in general, and varimax specifical-
ly, are most common and are much simpler to perform, and also to interpret, than oblique
rotations. My experience has been that rotation should always be done before attempting
to interpret the functions, but that little is gained by going beyond simple varimax rota-
tion. A contrary opinion and example is given by Richman (1981).

Orthogonal rotations in general work by searching for a rotated frame that minimizes
the number of basis functions that any particular time series in the original dataset
projects to. To say this another way, the technique seeks a rotated frame where any
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station's time series from the original time series projects to the new basis functions in
such a way that the projections are near 0 or 1. Preisendorfer (1988; pg. 271-274) gives
an excellent graphical explanation of why this criterion is appropriate; the purpose here is
simply to document how the basic algorithm operates. In doing the optimization, there is
a penalty function that increases when a projection is "far" from 0 or 1, and the exact
form of this penalty function defines numerous rotation schemes, of which varimax is
probably the most common. A review of many others is given by Harman (1976).

Figure 5 shows the result of applying a varimax rotation to the first 10 functions from
the PCA of the Pacific sea level dataset. The reason for using 10 functions is that results
for low order rotated functions are unstable if too few functions are rotated, but are rela-
tively insensitive to adding in a few extra functions that represent only noise. This con-
clusion is stated by Harman (1976), and my experience bears it out. The scree and Gut-
tman tests shown in Figure 2 are often useful indicators of the maximum number of pos-
sibly interesting functions, and I have found them useful as a guide to choosing the num-
ber of functions to include in the rotation procedure.

The maps and time series shown in Figure 5 account for almost exactly the same
amount of variance (50%) from the total dataset as the first two unrotated functions.
These functions are much simpler to interpret, however. Examination of the maps and
time series shows that the first and second functions, respectively, map to a western
Pacific ENSO response that is primarily north and south of the equator. The associated
time series show that the northern pattern occurs in the late part of the calerdar year,
while the southern pattern is associated with a timing that is several months later. Par-
ticularly interesting is the fact that the various events in the records map on to these two
modes differently; only the 1982-83 event shows a strong expression of both types of
events. Thus, it seems that the ENSO events tend to be one of the two types: a "northern"
type that sees mass lost primarily from north of the equator in the western Pacific late in
the calendar year, or a "southern" type where the mass comes from south of the equator
during the early part of the calendar year. Interpreting these two signals as simply the
beginning and ending stages of the same event is not quite satisfying, since in that view
most events either do not have a beginning or do not have an end.

EXTENSIONS TO PRINCIPAL COMPONENT ANALYSIS

Vector data

As developed in the preceding section, PCA works for scalar data via the variance, or
scatter, matrix. In fact, this restriction to scalar data is unnecessary, and vector data can
be treated as long as an appropriate scatter matrix can be defined. An appropriate scatter
matrix is one that properly represents the variability characteristics of the dataset being
studied, and one that has a full set of eigenvalues and eigenvectors. Note that there can be
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eigenvalues with multiplicity greater than one, although this does not generally happen in
datasets containing noise.

An early application of PCA to a vector-valued field was made by Barnett (1977),
who analyzed monthly mean surface wind vectors over the Pacific Ocean. His analysis
was not truly a vector analysis, however, in the sense that he separately analyzed the
zonal and meridional wind components without taking the vector nature of the data into
account. Legler (1983) treated basically the same dataset in a truly vectorial way by defin-
ing the wind vectors as a complex quantity and then defining the scatter matrix by using
complex conjugates to form the variance matrix.

Preisendorfer (1988) points out that the vector analysis can also be done by simply
defining each of the wind components at each station as a separate variable in a normal
(scalar) PCA. In this case, if there are M stations with N time points, then the scatter
matrix is 2M by 2M, and there are 2M eigenvectors, each of which has a real-valued N-
point time history function associated with it. He goes further to argue that this analysis
is not equivalent to the complex method, but contains some additional information on the
complex phase that is lost in forming the scatter matrix with complex conjugation. In
fact, I find that this technique is also simpler in practice than the complex one, in that the
same routines developed for scalar analysis apply to this problem as well.

Propagating signals

One problem with the basic PCA of space-time data is that the resulting functions do
not properly represent propagating signals. This is because the dataset is described by a
set of space maps modulated by separate time series. This is a serious drawback in
oceanography and meteorology where propagating signals are usually present, and are
often the features of primary interest to the analyst. A number of techniques have been
developed that extend the basic PCA to the case of signals that cannot be represented by
separable functions of space and time.

An early development was the method usually referred to as frequency domain em-
pirical orthogonal functions (FDEOFs). The basic references for this technique are Wal-
lace and Dickinson (1972) and Wallace (1972). Basically, this procedure starts by trans-
forming the time series at each point in space into the frequency domain. The resulting
complex spectrum are averaged over a frequency band of interest, and the resulting space
map of complex numbers is analyzed via a complex form of PCA. The result of this
analysis is a map of amplitude and phase that can be analyzed for phase propagation sig-
natures. This method has not been widely used and in my experience is not overly suc-
cessful at identifying signals that are not readily apparent in the original data.

An improved technique, referred to as complex empirical orthogonal functions
(CEOFs), was described by Barnett (1983). The results of this analysis are somewhat
similar to the output of FDEOFs, but the calculations are simplified by the use of a Hil-
bert transform on the original time series, which builds in the phase information neces-
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sary to identify propagating signals. The CEOF technique is more general than the
FDEOFs, and should be superior to that method at identifying features that are distinctly
non-sinusoidal in nature. Although computationally simpler than FDEOFs, I have found
in my own work that the CEOFs are similarly difficult to interpret in most applications.

Probably the most widely used technique for describing propagating signals is the ex-
tended empirical orthogonal function method (Barnett and Hasselmann, 1979; Weare and
Nasstrom, 1982). This technique builds in the phase information by "extending" the
analysis to include not only the original dataset, but also the same dataset at a variety of
temporal lags. These lagged time series are simply input as additional variables, and the
normal machinery for basic PCA therefore applies. With the extended dataset it is pos-
sible to identify patterns at one time that have high correlations with patterns at a later
time. A good example of the application of EEOFs is given by White and Tai (1992).
One advantage of this method is that the signals can deform in space and time in fairly
general ways without being lost to the technique. I have found this technique to be very
useful in a number of different contexts.

Another technique that can identify propagating disturbances is the principal oscilla-
tion pattern analysis. I will not discuss this technique, but will refer the interested reader
to the paper by von Storch in this same volume.

Canonical Correlation Analysis

In all of the discussion preceding I have dealt only with datasets consisting of one
data type; e.g., sea level or wind vectors. In fact, if the data are appropriately non-dimen-
sionalized, then there is nothing to prevent data with different units from being included
in the PCA. This procedure is often useful, but only identifies the major modes of
variability of the datasets. It does not identify the patterns of variability in the different
datasets that are related, or co-varying. There is, however, a technique related to PCA
that looks for these types of relationships; this technique is called canonical correlation
analysis (CCA), and in the past few years it is being more widely used in oceanography.

Preisendorfer (1988) shows how the PCA description of two different datasets can be
used to derive CCA, although the original derivation of CCA, which he attributes to
Hotelling (1936), did not actually make use of this machinery. To drastically oversimply,
the time history functions from the PCA for each of the datasets can be used to form a
correlation matrix. This matrix is then used to form an eigenvalue problem that leads to
the canonical correlation functions. The first of these functions can be interpreted as the
pattern in one dataset that is maximally correlated with the corresponding pattern in the
other dataset. Then the second function reveals the patterns that give the highest correla-
tion between the datasets after removing the correlation due to the first canonical corre-
late, and so on. As with RCA, there are selection rules to be applied to determine whether
the CCA results could arise from data consisting simply of noise.
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Aside from the fact that CCA can be derived via PCA, it is considered a related tech-
nique because it can be viewed as a natural extension of PCA. PCA describes the
variance structure of a dataset, or datasets, while CCA describes the covariance between
two datasets. Some useful examples of oceanographic and meteorological applications of
this technique are given by Barnett and Preisendorfer (1987) and Graham et al. (1987).

CONCLUSIONS

The basic calculations involved in PCA, which are probably familar to most oceanog-
raphers, were reviewed. Methods for testing the significance of the PCA functions were
discussed, and it was suggested that, in addition to the common use of variance dominant
selection rules (e.g., Rule N), more use should probably be made of time history and
space map selection rules. Also, the technique of factor rotation was discussedi briefly,
with the conclusion that rotation should be an important part of any attempt to physically
interpret the results of a PCA. Orthogonal rotations, such as varimax, are likely sufficient
for most applications.

Extensions of the basic PCA technique were discussed that allow the analysis of vec-
tor-valued datasets, as well as datasets containing signals that propagate in space-time.
My experience is that the most general procedure for dealing with vector data, described
by Preisendorfer (1718), is also the simplest to apply. Similarly, for the analysis of
propagating signpJl, the EEOF method is also the simplest to use and manages to per-
form at least as well as the more complicated frequency domain and complex techniques.
Finally, it was pointed out that CCA, which identifies patterns of covariance between dif-
ferent datasets, is a natural extension of PCA that is gradually finding more widespread
use in oceanography.
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PRINCIPAL OSCILLATION PATTERN ANALYSIS OF
THE INTRASEASONAL VARIABILITY IN
THE EQUATORIAL PACIFIC OCEAN

Hans von Storch
Max-Planck-Institut ffir Meteorologie, Hamburg, Germany

ABSTRACT

In the present paper the concept of the principal oscillation pattern (POP) analysis is
reviewed. This technique is used to simultaneously infer the characteristic patterns and
time scales of a vector time series. The POPs may be seen as the normal modes of a
linearized system whose system matrix is estimated from data. As a demonstration, the
POP technique is used for the analysis of the intraseasonal variability in the equatorial
Pacific Ocean; first results are presented. Daily observations of temperature and currents
in the upper 500 m of the equatorial Pacific, recorded by moored buoys, are analyzed with
respect to intraseasonal (40-180 day band) variations. Two oscillatory highly coherent
modes are found with periods between 65 and 120 days. Both modes propagate eastward
along the equator. The modes are clearly reflected in both the zonal currents and the
temperatures, which trail behind the zonal currents by 450. In the slower of the two
modes, the temperature signal propagates more slowly than the zonal current signal, and
no signal occurs in the meridional current. The mode's activity is enhanced during warm
events of the Southern Oscillation. In the faster mode a signal also appears in the
meridional current. Its amplitude exhibits an annual cycle, with variance on the annual and
on the semiannual period. The slower mode might be an equatorial Kelvin wave but the
faster mode, which has a significant meridional current component, is inconsistent with the
concept of an equatorial Kelvin wave.

1. INTRODUCTION

Principal oscillation pattern analysis. In the present paper the principal oscillation
pattern (POP) technique is reviewed (Section 2) and its usefulness is demonstrated by an
analysis of the intraseasonal variability in the equatorial Pacific (Section 3). The POP
analysis is a multivariate technique to empirically infer the characteristics of the space-time
variations of a complex system in a high-dimensional space (Hasselmann, 1988; von
Storch et al., 1988). The basic ansatz is to identify a low-order system with a few free
parameters fitted to the data. Then, the space-time characteristics of the low-order system
are regarded as being the same as those of the full system.

201
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Applications of POP analysis. The POP analysis is now a routinely used toolI to
diagnose the space-time variability of the climate system. Processes analysed with POPs
are
" The low-frequency variability of the thermohaline circulation in the global ocean

(Mikolajewicz and Maier-Reimer, 1991; Weisse et al., in press),

"* The low-frequency variability in the coupled atmosphere-ocean system (Xu, 1993),

"* The El Nifio / Southern Oscillation ENSO (Xu and von Storch, 1990; Xu, 1990;
Blumenthal, 1991; Latif and Villwock, 1989; Latif and Fligel,1990; Birger, 1993; Xu,
1992; Latifet al., 1993),

"* The Madden and Julian Oscillation (MJO), also named the tropical 30- to 60-day
oscillation (von Storch et al., 1988; von Storch and Xu, 1990; von Storch and
Baumhefner, 1991; and von Storch and Smallegange, 1991),

"* The stratospheric Quasi-Biennial Oscillation (Xu, 1992),
"* Tropospheric baroclinic waves (Schnur et al., 1993).

Generalizations of the POP analysis. There is a series of generalizations of the basic
POP approach which we will not detail in the present paper. The predictive potential of
the POP method has been tested with the Southern Oscillation (Xu and von Storch, 1990)
and with the Madden and Julian Oscillation (von Storch and Xu, 1991). In the cyclo-
stationary POP analysis, the estimated system matrix is allowed to vary deterministically
with an externally forced cycle (Blumenthal, 1991). In the complex POP analysis not only
the state of the system but also its "momentum" is modeled (Buirger, 1993).

Organization. In Section 2, the POPs are introduced in two conceptually different ways.
One way is to define POPs as normal modes of a linear system in which parameters are
inferred from a v-ctor time series. The other way is to regard POPs as a simplified version
of principal interaction patterns (PIPs). The PIP ansatz (Hasselmann, 1988) is a fairly
general approach which allows for a large variety of complex scenarios. In Section 3 a
POP analysis of daily hydrographic reports (temperature, zonal and meridional currents, as
well as surface wind) from moored buoys in the tropical Pacific Ocean is presented. Two
eastward propagating modes, both similar to the mode described by Johnson and
McPhaden (1993), are identified and their spatial signatures are described. The paper is
concluded in Section 4 with some remarks on the general merits and limitations of the
POP technique.

IA FORTRAN code with a manual (Gallagher et al., 1991) of the regular POP analysis is free of charge
available at the Deutsches Klimarechenzentrum, Bundesstrassse 55, 2000 Hamburg 13, Germany.
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2 PRINCIPAL OSCILLATION PATTERNS

The following notations are used: Vectors are given as bold letters and matrices as
calligraphic letters like .A or X. If A is a matrix then AT is the transposed matrix. If x is
any complex quantity then x* is its conjugate complex. It should be noted that the POP
formalism-conventional, cyclostationary, and complex POP analysis-may be applied to
linear systems whose system matrices are estimated from data or whose system matrices
are derived from theoretical dynamical considerations (Schnur et al., 1993).

2.1 POPs and Normal Modes

Normal modes. The normal modes of a linear discretized real system

x(t + 1) =-A x(t) (1)

are the eigenvectors p of the matrix A. In general, -A is not symmetric and some or all of
its eigenvalues X and eigenvectors p are complex. However, since A is a real matrix, the
conjugate complex quantities X* and p* satisfy also the eigen-equation A.p" = Xp'. In
most cases, all eigenvalues are different and the eigenvectors form a linear basis. So each
state x may be uniquely expressed in terms of the eigenvectors

x z ,p. (2)

The coefficients of the pairs of conjugate complex eigenvectors are conjugate complex,
too. Inserting (2) into (1) we find that the coupled system (1) becomes uncoupled, yielding
n single equations, where n is the dimension of the process x,

z(t + 1)- p =X -z(t0. p (3)

so that if z(0) = I
z(t). p = . p. (4)

The contribution P(t) of the complex conjugate pair p, p* to the process x(t) is given by

P(t) = z(t). p+ [z(t)- p]0. (5)

Writing p = p1 + i. p2 and 2z(t) = z'(t)-i z2 (t), this reads

P(t) =zI (t). pl + z 2 (t). p2  (6)
=t.(cos(r/t).- p' - sin(t/t) -p2)
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with A. = p. exp(-ifl) and if z(O) = 1. The geometric and physical meaning of(6) is that
between the spatial patterns pl and p2 the trajectory P(t) performs a spiral (Figure 1) with
period T= 2/cno and e-folding time r = -1/In (p), in the consecutive order

.p _p2 _p p2 I p . (7)

tt2t t-1

t=8 z z2
t=5 t t=7 Z

Figure 1. Typical evolution of a POP signal, given by Eq. (6), if z'(0) = 0 and z2(0) = 1. In this
demonstration the period is T 9 and the e-folding time is 'r 2.8.

The e-folding time. The e-folding time has to be considered with some caution. It
represents formally the average time for an amplitude of strength one to reduce to Ile. But
in the POP context this time is a statistic of the entire time interval, i.e., it is derived not
only from the episodes when the signal is active but also from those times when the signal
is weak or even absent. As such, the mode will be dampened less quickly as indicated by
the e-folding time when the mode is active. The other limitation refers to the presence or
absence of high-frequency variations. If these are filtered out, as in Section 3, the e-folding
time is lengthened.

Representation of normal modes. The modes may be represented either by the two
patterns pl and p2, or by plots of the local wave amplitude A2(r) = [pl(r)]2 + [p2(r)]2 and
relative phase Vi(r) = tan-' [p2(r)/pI(r)] (Figure 2). The transformation (7) between the
patterns pI and p2 can assume various geometric wave forms. If p2(r) = pl(r -r0) with a
location vector r and a fixed vector r0, the signal appears as a parallel crested wave of
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wavelength 4r 0, propagating in the r0-direction (Figure 2a). In Figure 2b an amphidromal
(rotational) wave is shown.

a)2

011P
/// 7' p

I I II I I i I
I I I ,/

W W I' 27(r

/ / / / I / / / ,

I, I, I~~I~ I I I
/ I / / I/ / ,/ I/

I it I I I I

OF go 1W0 270"

180"

Figure 2. Examples of (a) a propagating wave and (b) an amphidromal wave and their representation in
terms of POPs. Top two panels: representation by pI and p2 .Bottom panel: representation by phase V
(dashed) and amplitude A (solid). From von Storch et al. (1988).

Time coefficients. The pattern coefficients zj are given as the dot product of x with the
adjoint patterns p', which are the normalized eigenvectors of AT:

(pA)T x •z (pA)T pl =z (8)

k

POPs. All information used so far is the existence of a linear equation Eq. (1) with some
matrix .A. No assumption was made about the origin of this matrix. In dynamical theory,
the origins of Eq. (1) are linearized and discretized differential equations. In case of the
POP analysis, the relationship

x(t + 1) =.A.x(t) + noise (9)
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is hypothesized. Multiplication of Eq. (9) from the right hand side by the transposed xT(t)

and taking expectations, E, leads to

A= E[x(t + 1)xT (t)]. [E[x(t)xT (t)] ]-. (10)

The eigenvectors of Eq. (10) or the normal modes of Eq. (9) are called principal
oscillation patterns. The coefficients z are called POP coefficients. Their time evolution is
given by Eq. (3), superimposed by noise

z(t + 1) = A- z(t) + noise. (I1)

The stationarity of Eq. (11) requires p < 1. In practical situations, when only a finite time
series x(t) is available, -A is estimated by first deriving the sample lag-I covariance matrix
Xl= I• X(t +-I)XT (t) and the sample covariance matrix X 0  ,x(t)xr (t) and then

forming A = XIXo'. The eigenvalues of this matrix always satisfy p < 1.

To reduce the number of spatial degrees of freedom in some applications, the data are
subjected to a truncated empirical orthogonal function (EOF) expansion, and the POP
analysis is applied to the vector of the first EOF coefficients. A positive by-product of this
procedure is that noisy components can be excluded from the analysis. Then, the
covariance matrix X 0 has a diagonal form.

If there is a priori information that the expected signal is located in a certain frequency
band, it is often advisable to time-filter the data prior to the POP analysis. A somewhat
milder form of focusing on selected time scales is to derive the EOFs from time-filtered
data and then to project the unfiltered data on these EOFs.

Criteria to decide whether a POP contains useful information or if it should be regarded as
reflecting mostly sample properties are given by von Storch et al. (1988). The most
important rule-of-thumb is related to the cross spectrum of the POP coefficients zi and z2 :
at the POP period T, or at least in the neighborhood of T, the two time series should be
significantly coherent and 900 out of phase, according to Eq. (6).

Invariance against coordinate transformations. If the original time series x(t) is
transformed into another time series y(t) by means of y(t) = £- x(t) with an invertible
matrix L, (i.e., L-1 exists), then the eigenvalues are unchanged and the eigenvectors
transform as x:

.AX = XlXo'; ._Ay = lo'
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with Y,= E(y(t+ l)yT(t) =rXlLT and yo = £X 0 LT. Thus Ay = LAxL-1." If px is an
eigenvector of Ax with eigenvalue k i.e., AxpX= Xpx then AxL. Lpx = XpX and,
eventually £_AxL.-(Lpx) = X(.lpx). That is, if Px is a POP of the time series x, then
LPx = py is a POP of y with the same eigenvalue X.

The EOFs are not invariant against linear transformations £, since in general the matrices
X 0 and fXo.JT will have different eigenvalues and eigenvectors. Therefore, if the POP
analysis is begun with a projection of the data on a truncated EOF expansion, the results
of a POP analysis will change if the data are transformed into another coordinate system.

The POP coefficients. To get the POP coefficients, z(t), two approaches are possible.
One is to derive the adjoint patterns p4 and to use Eq. (8). An alternative is to not derive
adjoint patterns but to derive the coefficients z by a least-square fit of the data x by
minimizing

x-z.p_[Z.p10I1xz1 Iz 2p2 11 (12)

if p is complex, or

Ix-z pt. (13)

2.2 POPs = Trivial Case of PIPs

State space models. Many complex dynamical systems, x e R", may conveniently be
approximated as being driven by a simpler dynamical system, z e R', with a reduced
number of degrees of freedom, m < n. Mathematically, this may be described by a state
space model which consists of a system equation

z(t + 1)=F[z(t),oa,t]+ noise, (14)

for the dynamical variables z = (z,,..... z ) and an observation equation

x(t) = Pz(t) + noise = Xzm(t)pi + noise (15)
J

for the observed variables x. P is the matrix whose columns are the vectors, or patterns,
pj. In general P is not a square-matrix. F[z(t). a,t] denotes a class of models which can

be nonlinear in the dynamical variables z and which depends additionally on a set of free
parameters a = (axI,a 2 ,.:..). Both equations, Eqs. (14,15), are disturbed by an additive
noise.
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Since m < n, the time coefficient zj(t) of a pattern pi at a time t is not uniquely determined
by the x(t). Instead, it may be obtained by a least-square fit, i.e.,

z(t) = (PT)py•IpTx(t). (16)

The intriguing aspect of state space models is that the dynamical behavior of complex
systems often appears to be dominated by the interaction of only a few characteristic
patterns pi. That is, even if the dynamics of the full system are restricted to the subspace
spanned by the columns of P, its principal dynamical properties are represented.

PIPs. When fitting the state space model Eqs. (14,15) to a time series, the following
entities have to be specified: the class of models SF, the patterns P, the free parameters a,
and the dimension of the reduced system m. The class of models SF has to be selected a
priori on the basis of physical reasoning. Also, the number m might be specified a priori.
The parameters oa and the patterns P are fitted simultaneously to a time series by
requesting them to minimize

E [P';a- = Ei x(t + 1)- x(t) - PCFz(t),a,t -z(t))1 2  (17)

where C [P;al is the mean square error of the approximation of the (discretized) time
derivative of the observations x by the state space model. The patterns P, which minimize
Eq. (17), are called principal interaction patterns (Hasselmann, 1988). If only a finite time
series of observations x is available, the expectation E is replaced by a summation over
time.

In general, the minimization of Eq. (17) is not unique. In particular, the set of patterns
P = P. £ with any nonsingular squared matrix £ will minimize Eq. (17), if P does, as
long as the corresponding model F' = £-'.F belongs to the a priori specified model class.
This pro, iem may be solved by requesting the solution to fulfill some constraints, e.g., that
the linear term in the Taylor expansion off is a diagonal matrix.

POPs as PIPs. The principal oscillation patterns can be understood as a kind of simplified
principal interaction patterns. For that assume m = n. Then, the patterns P span the fill x-
space, and their choice does not affect c [•P;aj. Also, let SF be a linear model
Flz(t),a] = .A- z(t), where the parameters a are the entries of A.. Then the dynamical
equation Eq. (14) is identical to Eq. (11). The constraint mentioned above leads to the
eigenvectors of.A as being the PIPs of the particular, admittedly simplified, state space
model.
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2.3 Associated Correlation Patterns

Definition and representation. The associated correlation pattern analysis (von Storch
et al., 1988) is a regression analysis to infer the spatial properties of a signal which is
encoded in a two-dimensional index (a complex POP coefficient, for instance). If the
parameter under consideration is /(t) and the bivariate index is (z' (t), z2 (t)) the two
associated correlation patterns 4' and 4' minimize

2(t)- ( 1 - ;(t) 4 2 m2im. (18)

The normalization with I in Eq. (18) has been introduced so that 41 represents a typical
state for z1(t) = 1, z2(t) = 0 and 42 a typical state for z'(t) = 0, z2(t) = 1. The solution of
Eq. (18) is straightforward and requires the solution of a 2 X 2 linear equation at each
location r of the input field €Y- (y,).

The associated correlation patterns can be displayed directly by the two patterns 41 and •2
or by amplitude distributions and phase distributions (Figure 6). The amplitude A and the
phase V at the location r is given by

A = J()2 + (42)2 (19)

tan(2xy)(20)

with T being the period of the mode. The phase W has been defined such that 0 =0
coincides with z2 = 0 and z1 > 0, and w = T/4 with z1 = 0 and z2 < 0 (compare with
Eq. (7)).

Measure of skill. A number measuring the relative importance of a POP for a parameter

Yr at the location r is the rate of explained y,; variance by the index (Az 2). This rate is
given by

E(y,,,2 =Var(y,) - 4E , (21)

Var(y,)

with
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E2 =. W t _ z2(t) -.2]

being the local error in Eq. (18); E= I indicates a perfect model and E 0 a model
without skill.

3. POP ANALYSIS OF THE INTRASEASONAL VARIABILITY
IN THE EQUATORIAL PACIFIC

General. The general analysis strategy is first to derive an index of the equatorial modes
through a principal oscillation pattern (POP) analysis of the equatorial current meter
moorings at 165 *E, 140 0W, and I 100W. The time series at these stations are relatively
long and sample the equator fairly well. Zonal currents and temperatures, which ought to
reflect cquatorial Kelvin waves well, as well as meridional currents are monitored by these
buoys. After having established that the index makes sense, all available data from the
current meter moorings and from the ATLAS buoys are examined in an "associated
correlation pattern" analysis. The purpose of this exercise is to infer the 3-dimensional
spatial structure of the modes.

3.1 Raw Data

For the analysis, daily observations were available from two series of moored buoys
(Hayes et al., 1991):

"* Current meter moorings at four locations, the exact positions of which are given in
Table 1. These buoys recorded zonal and meridional currents and temperature at
various levels and near surface air temperature and zonal and meridional wind.

" ATLAS buoys located at 20 positions in the near-equatorial Pacific (for the exact
positions, see Table 1). From these buoys, subsurface temperatures at various levels,
as well as near surface air temperature and wind, are available.

The shortest time series is from 147 0E, 5°N (9 months). Maximum length is 7 years (at 0°,
110 W and 140°W).

Mean State. The buoy data represent a good data base to sketch the mean distribution of
currents and temperature in the equatorial Pacific. In Figure 3 are plotted the mean zonal
current and temperature distributions along the equator as well as latitude-depth cross-
sections of temperature along 1650E and 1 10W. The mean equatorial temperature
distribution is dominated by the sharp thermodine that separates water of 10-1 50C at
deeper layers from warm surface waters of 240C in the east and 28°C in the west. If we
identify the thermocline with the 200C isotherm, then the thermocline rises from 180 m at
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165'E to 100 m at 140'W to 60 m at 1 10°W. The zonal current is weakly westward at the
surface with maximum values below 25 cm/s. Maximum eastward flowing currents, the
Equatorial Undercurrent, prevail along the thermocline, with maximum values at about
the 17.5 0C isotherm. At 165°E the maximum current is below 50 cm/s, at 140'W
maximum speeds are 100 cm/s, and at 1 100W above 75 cm/s.

Maximum temperatures prevail north of the Equator in the east and south of the Equator
in the west. The thermal wind relationship is nicely reflected in the mean distributions (Fig.
3a, c and d ).

Table 1. Position of buoys from which data have been used in the present study. Also
given is the maximum time interval for which at least one variable is available.

Instrument Longitude Latitude Data interval Parameters

CMM 00 165 0E 5/86 - 4/91 current, temperature, wind
CMM 00 140OW 5/84-4/91
CMM 00 110 0W 5/84-4/91
CMM 70N 110 0W 5/88-4/91
ATLAS 50N 147 0E 5/90 - 2/91 temperature, wind
ATLAS 80N 165 0E 5/90-4/91
ATLAS 50N 165 0E 7/88-4/91
ATLAS 20N 165 0E 7/87. 4/91
ATLAS 20S 165 0E 5/86-4/91
ATLAS 50S 165 0E 7/87-4/91
ATLAS 00 169 0W 5/88 - 4/91
ATLAS 70N 147 0W 11/88 - 11/90
ATLAS 90N 140OW 5/88 - 4/91
ATLAS 50N 140OW 5/88 - 4/91
ATLAS 20N 140°W 5/87 - 4/91
ATLAS 20S 140OW 5/87 - 4/91
ATLAS 50S 140°W 10/90 - 4/91
ATLAS 70N 132 0W 5/89- 10/90
ATLAS 00 124 0W 5/87 - 4/91
ATLAS 50N I 100W 5/86 - 4/91
ATLAS 20N I 100W 6/85 - 4/91
ATLAS 20S 110 0W 5/85-4/91
ATLAS 50S 110 0W 5/86-4/91
ATLAS 80S 1 100W 5/86 - 6/87

Variability around the annual cycle. The annual cycles have been removed from all
data. To also exclude part of the Southern Oscillation-related variability, this removal of
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the annual cycle was done for each May-to-April segment separately. The May-to-April
segments were chosen to represent one "El Niflo year" (Wright, 1985). As an example,
three variables at 00, 140°W are shown before and after the removal of the low-frequency
variability (Figure 4).

At the equatorial buoy all parameters undergo marked variations on the interannual time-
scale, some of which stem mostly from the regular annual cycle (e.g., the zonal wind). In
the subsurface variables the irregular ENSO-related variations contribute most to the low
frequency variability. The high-frequency variations are normally distributed. In the zonal
wind the intraseasonal variations are almost white in time, whereas the subsurface
parameters exhibit an oscillatory behavior with typical periods of 50-100 days. The zonal
current seems to lead the temperature by a few days.

3.2 The POP Analysis of the Equatorial Current Meter Mooring Data

Preprocessing of the data. In the data field to be analysed, we have parameters that differ
with respect to units as well with respect to their standard deviations. To allow all
parameters to play the same role in the analysis, all data are standardized to zero mean and
standard deviation one.

For the POP analysis it is often helpful if the data are preprocessed prior to the analysis
with the purpose of suppressing space-time noise (see section 2.1). The spatial noise is
taken out by doing the analysis in a low-dimensional subspace spanned by the first few
EOFs, and the temporal variations on time scales irrelevant for the process under
investigation are taken out by a time filter.

The data are first subjected to an EOF analysis. In this EOF analysis the entries lij of the
correlation matrix have been estimated from all available pairs of observations, i.e.,

7i =I Ip(t)pi(t) (22)

where pi(t) represents the i-parameter of the data field X(t) at time 1. Ti. is the set of all
times when both pi and pi have been observed and ni. is the number of elements in T
Definition Eq. (22) is adequate for the case of gappy data. Only those pairs of indices (iQ)
were considered for which n,. was at least 50% of all possible observations.

The EOF coefficients ak(t) are then no longer given as the dot product of the field R(t) at
time I and the respective EOF ik but are determined as a least-square-fit

11 i(t) - ak(t) x P' 11 = min. (23)
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The EOF coefficients zk(t) represent ccmplete time series over the entire 7-year time
interval from May 1984 through April 1991. These time series are time-filtered such that
all variability below 10 days and above 180 days is completely eliminated and all variability
on time scales between 40 and 150 days is not affected. In the windows between 10 and
40 days and 150 and 180 days the filter response function smoothly changes from 0 to 1.

Results of POP analysis. Two oscillatory modes are identified whose coefficient time
series exhibit the desired high coherency and 90°-out-of-phase relationship. In Figure 5 the
amplitude time series of the two complex POP coefficients are plotted. Note that the
coefficient time series have been normalized so that Var(z' (t)) = 1. The coefficients were
obtained by means of the adjoint patterns and Eq. (8).

One mode has a POP period T = 65 days, and an e-folding time r = 73 days. It represents
about 16% of the variance of the band-pass filtered, EOF-truncated and normalized data
(at all three locations, for temperature, zonal, and meridional currents as well as winds,
and at all depths). In consistency with the POP period the maximum coherence is obtained
for 60 days. The amplitude time series reveals a marked annual cycle, with a definite
appearance of a semiannual component. The wave activity is strongest during solstice
conditions and minimum activity during equinoctial conditions.

The second mode has an e-folding time of 106 days and a POP period T = 120 days. But
the POP coefficients z1(t) and z2(t) have largest coherencies at 72 days, so that the POP
period of 120 days likely is an overestimate of the true oscillation period. The POP
coefficient represents 18% of the variance of the band-pass filtered, EOF-truncated, and
normalized data. The amplitude time series in Figure 5 are hardly affected by the annual
cycle. Instead the modification of the large-scale environment through the development of
warm El Nifuo conditions leaves a clear mark on the time series. During the warm event in
1986/87 and the early phase of the warm event in 1990/91 the activity of the waves is
enhanced.

The two modes are only weakly correlated. The correlations between the real and
imaginary parts of the coefficient time series are very small, and the correlations between
the real (imaginary) parts of the two modes are about -0.25.

3.3 The Spatial Signature of the Mode

General. In the present study, associated correlation patterns have been computed from
various parameters for both modes separately. In all cases the annual cycle, as represented
by the first two annual harmonics and the overall mean of each May-to-April segment, has
been removed prior to the analysis. No more time-smoothing was done because of the
wide gaps in the data. An implicit time-filtering has been introduced through the use of the
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1984 1985 1986 1987 1988 1989 19

Figure 5. Time series of the amplitude of thM two modes identified in the joint POP analysis of normalized
data from equatorial current met moorings. The yea arm drawn as May-to-April segments. (a) The 120
day mode. (b) The 65 day mode.
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POP coefficient time series. Since these time series have been derived from time-filtered
data (see above), they are themselves smooth. Unlike the POP analysis, the data are not
normalized for the associated correlation pattern analysis.

Currents at the current meter moorings. The longitude-depth distributions of the
amplitudes and phases; of the two intraseasonal modes, with POP periods of 120 days and
65 days, are shown in Figure 6 for the zonal current. Both modes represent eastward
propagating signals.

The 120-day mode has its largest amplitudes in the central part of the tropical Pacific, with
maximum values of 16 cm/s, as typical anomalies, at 50 m depth at 165'E and 160 m
depth at 140'W. In contrast, the 65-day mode has maximum zonal current anomalies at
upper levels (50 m and above) in the eastern part of the basin, with a typical maximum of
12 cm/s at 140'W and 19 cm/s at 110 W.

In the 120-day mode, the zonal current signals need about 60 days to propagate from the
165*E buoy to the easternmost buoy at I 10'W. If we accept the estimate of 120 days as a
period, then the mean phase speed is 1.8 m/s. This number is increased to 2.4 m/s or 3.0
m/s if the period is set to 90 or even 72 days (see above). The phase lines are vertically
tilted at 165 0E and 1400W, with the upper levels lagging the lower levels by about 450 or
15 days (of a 120-day period).

The phase speed for the 65-day mode is estimated to be, on an average, 2.1 m/s. At the
two eastern positions, the phase lines are again tilted, with the lower levels leading the
upper levels by about 450 or 8 days (of a 65-day period). Maximum explained iocal
variance of the zonal current field is 40% at 120 m at 140OW for the 120-day mode and
20% at 120 m at I 100W for the 65-day mode.

Current information is also available for one off-equatorial location from the 70N, 140OW
buoy. Here a maximum of 7% of explained variance is obtained for the 120-day mode at
40 M, where an amplitude of 5.4 cm/s is found (not shown). Thus the signal is weak at
that location, but interestingly the sign at 7*N is opposite to that at the equator (not
shown). A similar result is found for the 65-day mode.

In the meridional current the signal is negligible for the 120-day mode, but a well-defined
signal is identified in the 65-day mode. Maximum percentages of explained local variance
are 12% at 120 m and 160 m at I 100W. A maximum amplitude of 10 cm/s near the
surface lags an amplitude of about 8 cm/s at lower levels by about 10 days (not shown).
The phase relationship with the zonal current is that northward meridional current
anomalies lead easterly zbnal current anomalies by 10 days or so. An alternative
interpretation is that easterly current anomalies lead southward current anomalies by 20
days or so.
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equator. Top: The amplitudes A in 10-2 cmns, and Bottom: The phases Wp in days (relative to base periods
of 120 or 65 days).
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Temperature at all buoys. For temperature, the amplitude distributions A and phase
distributions W are shown as three cross sections through the tropical Pacific: a longitude-
depth cross section along the equator (Fig. 7), a latitude-depth cross section at I I00W
(Fig. 8), and a longitude-latitude cross section at 100 m (Fig. 9).

Maximum temperature amplitudes of both modes cluster along the thermocline (Fig. 3a)
with maximum values of more than I °C (Fig. 7). Overall, the temperature signal of the
120-day mode is stronger than that of the 65-day mode. The temperature signals
propagate like the zonal current signals eastward along the equator. The 120-day
temperature signal travels over the basin in about 90 days (relative to a base period of 120
days) so that the phase speed of temperature is 1.5 times that of the zonal current. At the
165'E buoy, the temperature and zonal current signals are almost in phase so that the later
phase lags must stem from different travel times. The propagation of the temperature
signal of the 65-day mode is mostly parallel to that of the zonal current signal but there is
a uniform lag of about 10 days.

The latitude-depth cross sections of the associated correlation patterns at I 10°W reveal
maximum amplitudes of more than IC at about 100 m depth. In both modes are a marked
amplitude minimum at 2°N and a maximum at 6°N. The activity of the 120-day mode is
largest south of the equator, with a maximum amplitude of 1.40C at 20S, whereas the 65-
day mode has its largest amplitude of 1.40C at 60N. Both modes exhibit complicated phase
distributions. In the 120-day mode the phase varies mostly between 60 days at deeper
levels and 90 days at upper levels. Only along the minimum at 20N the phase is markedly
lagging its neighborhood by 30 or more days. In the 65-day mode the maximum at 60N is
1800 out of phase with the temperature signal at the equator which, in turn, lags the
secondary maximum at 2'S by another 10 to 15 days.

Figure 9 shows the latitude-longitude distributions of the amplitudes and phases of the two
modes in 100 m depth. Maximum amplitudes of the order of I °C at 140°W at the equator,
where the thermocline is close to 100 m, tend to appear simultaneously with even larger
(-2 0 C) anomalies with opposite sign at 70N. The eastward propagation is clearly visible in
the 65-day mode, whereas in the 120-day mode the eastward propagation seems to be
limited to the area west of 1400W. The isolated amplitude maximum at 50N, 147 0E should
not be taken too seriously because of the shortness of the time series at that location (see
Table 1).
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Discussion: Equatorial temperature anomalies and advection. Because of the marked
spatial gradients in the mean temperature field (Fig. 3) the temperature advection with the
anomalous zonal currents might contribute significantly to the creation of temperature
anomalies. Estimates of such temperature anomalies may be obtained for the equator since
information on the currents is available there. If the anomalies are labelled by a * and the
mean state by a -, then the effect of the anomalous currents on the temperature is
approximated by

T u' w v × Tý j(24)-- V* 2

with T, u, and v representing the temperature and zonal and meridional currents, and T the
period; x refers to the zonal direction and y to the meridional direction. In the following
we consider the situation at 140°W at 120 m depth.

The zonal gradient of the mean T is approximately 2x 10' K/cm (Fig. 3). For the 120
day mode the anomalous zonal current is 10 cm/s (Fig. 6) and the period is somewhere
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between 80 to 120 days. Equation (24) yields with these numbers a temperature anomaly
between 0.6 and 1.00C, which compares well with the result of I.00C in Fig. 7. The 120
day mode is not connected with significant anomalies of the meridional current. Thus this
back-of-the-envelope calculation Eq. (24) proposes that the equatorial temperature
anomalies are due to anomalous zonal advection. This hypothesis is supported by the
different travel times of the temperature and zonal current signal, which was found in a
numerical experiment on the the response of the tropical Pacific to westerly wind bursts
(Latif et al., 1988).

The typical zonal current anomalies of the 65 day mode are only 5.4 cm/s at 120 m (Fig.
6) and the characteristic time T/2 is only 32 days. Thus the effect of zonal advection is
estimated as 0.3°C, which is significantly less than the predicted 0.9°C (Fig. 7). Thus zonal
advection cannot fully explain the observed temperature anomalies-which is consistent
with the coincidence of the temperature and zonal current travel times. The 65-day mode
exhibits, however, a significant signal in the meridional current which could account for
equatorial temperature anomalies of 0.3°C.

Kelvin waves'.' Are the modes identified and described so far what people call Kelvin
waves (Moore and Philander, 1977)? The vertical structure of the modes along the
equator, the horizontal scale, the eastward propagation and the time scale are broadly
consistent with the concept of equatorial Kelvin waves. But several aspects are
inconsistent with this concept. There are two modes, which have similar vertical
structures, similar horizontal scales and time scales, that certainly cannot be accounted for
as the first two Kelvin modes. The presence of a signal in the meridional signal in the 65
day mode does not fit the specification of a Kelvin wave nor has the rich structure found
off the equator yet been described by the theory of equatorial Kelvin waves.

Johnson and McPhaden (1993) analyzed five years (1983-87) of current and temperature
data from the 140°W and 1 10°W equatorial moorings and seven months of data from
bouys at 20S, 00 and at 20N, 140'W. They used the complex empirical orthogonal
functions (CEOFs, see also Section 4) and found one dominant mode that was broadly
consistent with the idea of a first baroclinic Kelvin wave. The main differences from a
conventionally defined Kelvin wave were these:

" A local maximum and a local minimum of the zonal velocity below and above the core
of the equatorial undercurrent. This results holds for both modes identified in the POP
analysis.

" An equatorial minimum of the temperature signal at the thermocline is straddled by
two maxima at 20S and 20N. In the present POP analysis, on the other hand, the
maximum at 2°S is reproduced, but north of the equator at 20N a well-defined
minimum is identified. Possibly Johnson and McPhaden's (1993) result is due to the
short analysis period of only 210 days.
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A nonzero temperature signal at the surface lags the zonal current signal at the surface
and the temperature signal at the thermocline by 900. This result is confirmed by the
POP analysis, in particular for the 120 day mode.

The biggest difference from Johnson and McPhaden (1993) is the presence of two modes
which have uncorrelated coefficient time series but share substantial similarities in their
spatial appearance. A reason for this difference might lie in the different analysis
techniques. Johnson and McPhaden (1993) used CEOFs so that any two modes must be
orthogonal in space whereas the POP analysis does not require orthogonality. If there are
two orthogonal modes (T,,ui) (i = 1,2) with temperature signals T and zonal current
signals u the orthogonality requires

T"TT + =0. (25)

Because of the sharp thermocline in the east equatorial Pacific the largest temperature
anomalies will be centered around the thermocline so that T, - T2. Thus to satisfy Eq.
(25) a negative correlation of the current signals is needed, i.e., uI - -u 2 . This latter
condition represents a severe limitation without any physical justification. Therefore I
speculate that the CEOF technique could not easily be used to identify two orthogonal
modes in the equatorial (Tu) data. This (admittedly handwaving) argument might help to
resolve the apparent contradiction of only one mode in Johnson and McPhaden (1993) but
two modes in the POP analysis. On the other hand, there is no support in the literature (as
far as I know) for the idea of two non-orthogonal modes.

The 65 day mode is not envisaged by the theory of equatorial wave dynamics. This theory
deals with the growth of small disturbances and not with the development or breakdown
of finite amplitude disturbances. Schnur et al. (1 993) have shown, for the case of synoptic-
scale disturbances in the extratropical troposphere, that the POP analysis is an adequate
tool to obtain not only the normal modes of a dynamical system but also modes that
represent finite amplitude phases in the full spectrum of variability. I speculate that the 65
day mode might represent such a finite amplitude mode. It remains to be clarified if the
results of this study will stand the test of more data, longer time series, and closer scrutiny.
However, one has also to keep in mind that the present theory of equatorial Kelvin waves
is based on a number of severe simplifications, one being the horizontal homogeneity of
the background state.

4. CONCLUSIONS

The purpose of the present paper is two-fold. The main point is to introduce the POP
technique to the oceanographic community. The minor point is to present first results from
an analysis of data that are irregularly distributed in space and time.
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The POP technique. The POP method is a powerful method to infer simultaneously the
space-time characteristics of a vector time series. The basic idea is to isolate low-
dimensional subsystems that are controlled by the linear dynamics of the full system. Even
if the POP method represents the most consistent way of doing so, there are other
techniques that can be used successfully for similar purposes. An alternative is the complex
empirical orthogonalfunctions (CEOFs; Wallace and Dickinson 1972, Barnett and
Preisendorfer 1981). CEOFs are obtained by applying the conventional EOF technique to
a complex time series whose real part is the real time series that has to be analysed and
whose imaginary part is the Hilbert transform of that real time series. (CEOFs are related
to EOFs just like complex POPs to regular POPs ). The main difference between CEOFs
and POPs is that CEOFs are constructed under the constraint of a maximum of explained
variance and mutual orthogonality. The characteristic times, the period and the damping
time, are not an immediate result of the CEOF analysis but have to be derived a posteriori
from the CEOF coefficient time series. The POPs, on the other hand, are constructed to
satisfy a dynamical equation Eq. (11), and the characteristic times are an output of the
analysis; also the complex POP coefficients z(t) are not pairwise orthogonal. The non-
orthogonality makes the mathematics less elegant, but it is not a physical drawback,
because in most cases there is no reason to assume that different geophysical processes
develop statistically independent from each other. The rate of variance explained by the
POPs is not optimal and has to be calculated after the POP analysis from the POP
coefficients.

The POP method is not a tool that is useful in all applications. If the analysed vector time
series exhibit a strongly non-linear behaviour, as in turbulent flows, the POPs will fail to
identify a useful sub-system, simply because a linear sub-system does not control a
significant portion of the variability. The POP method will be useful if there are a priori
indications that the processes under consideration are to a first approximation linear.

Equatorial Waves. We have found two modes of variability in the equatorial Pacific
Ocean. The slower mode, with a nominal period of 120 days, resembles a first baroclinic
Kelvin wave. The other, 65-day mode is different from theoretically derived modes and
from previously empirically derived modes. More work is needed to ensure the reality and
the signature of the two distinct modes.
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ILLUSTRATING FREQUENTIST AND
BAYESIAN STATISTICS IN OCEANOGRAPHY

George Casella, Biometrics Unit, Cornell University, Ithaca, NY 14853

ABSTRACT

Both frequentist and Bayesian methodologies provide means for a statistical solution to a
problem. However, it is usually the case that, for a given situation, one methodology is
more appropriate. Using a number of oceanographic examples we explore the components
of a statistical solution and illustrate the most appropriate methodology. We argue that the
statistical consideration of utmost importance is the type of inference and conclusion to be
made. In some examples it is more appropriate to make this inference as a Bayesian, and in
some it is more appropriate to make this inference as a frequentist.

"Still, it is an error to argue in front of your data. You find yourself insensibly twisting
them round to fit your theories."

Sherlock Holmes
The Adventure of Wisteria Lodge

1. INTRODUCTION

An alternate title for this paper might well be "Conditional and Unconditional Inference in
Oceanographic Studies," as a fundamental difference between frequentist and Bayesian
statistics is their resulting inference. A frequentist inference is unconditional, applying to a
series of repeated experiments (most always an imagined series). In contrast, a Bayesian
inference is conditional, applying to the data at hand, and not directly addressing the
concept of repeatability.

This paper is an introduction to these methods and illustrates their uses with some
oceanographic data sets. The primary message is that each statistical view has a lot to
offer, and, depending on the problem, one methodology is probably more appropriate. We
illustrate this through the examples.

A second goal of this paper is to try to explain to the oceanographic community how a
statistician approaches a problem. The purpose of this endeavor is to provide a structured
approach to dealing with problems involving data, from their inception to ending. In doing
so, perhaps the task of detIing with the ever-increasing data bases can be made a little
easier.
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The remainder of the paper is arranged as follows. In Section 2 we give a general outline
of how to approach a problem statistically, illustrating this with an example in Section 3.
Section 4 discusses the underlying differences between the frequentist and Bayesian
approaches to statistics, and Sections 5 and 6 contain more examples illustrating these
methodologies. Section 7 is a concluding discussion.

2. COMPONENTS OF A STATISTICAL SOLUTION

In the best of all possible worlds, a problem is planned, statistically, from beginning to end.
Chronologically, the steps of a solution are these:

1. Model the Process
2. Design the Experiment
3. Collect the Data
4. Estimate and Verify the Model.
5. Infer and Conclude
6. Implement the Solution

Although the steps are performed in chronological order, they are best planned in reverse
order. That is, when approaching any problem, the first consideration is "How will the
knowledge we gain be implemented?" For example, if a study is proposed to examine
wave magnitude and direction in the North Atlantic, the first consideration should be the
use of the resulting knowledge. Will it be used to plan routes for oil tankers? Will it be
used to increase our basic knowledge of ocean dynamics? By answering these questions
first, the remainder of the steps of a statistical solution will fall into place, and the problem
can be attacked in a very efficient fashion. Although this mechanism for solution is not
usually taught in the classroom, it seems to be the one most preferred by statisticians. By
concentrating on the final result, the entire study becomes focused.

With respect to frequentism or Bayesianism, the components of the statistical solution
remain essentially unchanged. Of course, there are some differences in the approaches,
with the major difference being in the modeling and inference stages. However, the overall
attack is similar and is illustrated in the next section.

3. AN EXAMPLE CONCERNING ICEBERGS

Defant (1961, page 278) presented the following data on the frequency of icebergs off
Newfoundland.
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Table 1: Frequency of icebergs off Newfoundland south of 480N
(a) and south of the Grand Banks (b) for the period 1900-1926.

Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(a) 3 10 36 83 130 68 25 13 9 4 3 2 386
(b) 0 1 4 9 18 13 3 2 1 0 0 0 51

For our example, we will look at the question of whether the yearly distribution of
icebergs is the same in each location. A glance at Figure 1 will show that such a hypothesis
is very likely, but for illustration we will step through both a Bayesian and a frequentist
approach to the problem. We take as the goal of our study to be the description of the
distribution of icebergs off Newfoundland.

Relative Frequency of Iceergs Figure 1. Relative
frequencies of

0.4 icebergs off (a)
Newfoundland (solid

0.35 squares) and (b)

0.3 Grand Banks (open

025 
squares).

0.2

0.1

OAO

0.05

0
1 2 3 4 5 6 7 a 9 10 11 12
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In both the Bayesian and frequentist approaches to this problem we assume that the data
are distributed according to a multinomial distribution, and we wish to test the null
hypothesis Ho: The distributions in locations (a) and (b) are the same. To test this as a
frequentist we use a chi-squared test of association (see Snedecor and Cochran, 1989).
The chi-squared test results in ap-value of 0.977, which is very strong evidence in favor
of the null hypothesis.

To perform a Bayesian analysis a prior distribution must be specified, that is, a distribution
that we subjectively believe describes the pattern of icebergs. We then use this
distribution, in conjunction with the observed data, to assess the plausibility of the
hypothesis. Since we really have no prior knowledge about the icebergs, we use a strategy
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that attempts to model this ignorance and calculate the probability of every data table with
thfe given marginal totals, using a hypergeometric distribution. This leads us to use Fisher's
exact test (Fisher, 1970) and assess the probability of the null hypothesis as 0.9c4. Again,
this is very strong evidence in favor of this hypothesis. (Strictly speaking, Fisher's exact
test is not a Bayesian procedure but a conditional procedure, as it is calculated
conditionally on the observed data. However, the important feature is that it yields a
conditional inference.)

We now can clearly see the distinction between Bayesian and frequentist inferences. The
frequentist bases inference on a frequency interpretation. A formal conclusion would be of
the form, "the statistical procedure used (here the chi-squared test) would result in an
erroneous inference less than 5% of the time in repeated experiments." In contrast, the
Bayesian inference is conditional on the observed data, and we would formally conclude
"based on the stated prior distribution and observed data, the probability is 0.994 that H0
is true." We now look at these differences more closely.

4. WHERE DOES THE RANDOMNESS COME FROM?

The most important part of any statistical investigation is the resulting inference. In fact, it
may even be said that the main reason for doing a statistical investigation is to produce a
meaningful inference, because the inference applies to a wider population than is actually
studied and measured. (For example, after measuring the activities of a number of waves
in a certain area, we are then interested in making a statement (an inference) about all
waves in that area.) To make this inference we need an underlying model of the
phenomena, one that accounts for the randomness of the observations and allows an
inference. Bayesians and frequentists have different approaches to this.

4.1 Frequency Randomness

The frequentist assumes repeatability of the experiment, that the experiment actually
performed is one of an infinitely long sequence of identical experiments. If we denote this
sequence of experiments Ej,E24...,Ek, Ek+ i,..., then we make our inference to the entire
sequence, even though only one experiment (say Ek) is actually performed. The rest of this
imagined sequence builds the randomness into our model. We know that the results of
each experiment (if performed) would be slightly different, and our inference will take
these potential differences into account.

Thus, the frequentist inference is an unconditional one that applies to the entire sequence
and does not single out the experiment actually performed. It is important to realize that
the inference is about the performance of the procedure over the entire sequence of
experiments, such as "The statistical procedure used will be correct in 95% of all
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experiments performed." The actual outcome of the observed experiment will not change
this inference.

4.2 Bayesian Randomness

4In a Bayesian analysis the data are assumed to be fixed, and inference is made conditional
on their observed values. Thus, no randomness comes from the data. The randomness in a
Bayesian inference comes from the subjective prior distribution. This randomness,
together with the information in the data, is combined into the posterior distribution. The
posterior distribution is then used for inference. Of course, different subjective prior
distributions may result in different inferences.

More precisely, suppose there are data, X, which vary according to a probability
distribution f(xI 0), a distribution indexed by an unknown parameter 0. (For example,

f(.j 0) may be a Gaussian distribution with unknowi, mean 0.) We then assume that the

parameter 0 varies according to a prior distribution ir(6). This probability distribution
reflects our knowledge about the parameter 0 before observing the new data x. (In
keeping with convention, an upper case X denotes an unseen random variable whereas a
lower case x denotes an observed value. Thus the equation "'X = x" means that we have
observed the value x of the random variable X.) Using the laws of probability (or
sometimes called Bayes rule) we calculate the posterior distribution of 0 given X = x,
g(OI x) as

g~elX) f(X 1) X(0)

f6 f) =f(xj 6) ic(9) A'

where the integral is over all values of 0. (For more detail on such calculations, see Casella
and Berger, 1990.) Our inference is then based on g(01 x), which only considers the

experiment actually performed, not any repeated sequence. For example, one might infer
"On the basis of the specified x(0) and observed x, we conclude that 0 0 with probability

95%." This inference would follow if it were the case that J g(01 x)d6 - 0.95.
0

4.3 The Appropriate Inference

As mentioned before, the purpose of this paper is not to make value judgments as to
whether Bayesianism or frequentism is better. Rather, the purpose is to illustrate situations
where one method is more appropriate. It then follows that the more appropriate
methodology, and inference, is the one to use. From the previous two subsections, we see
that the frequentist inference is more appropriate if repeatability is important, whereas the
Bayesian inference is more appropriate if the inference is to be made conditional on the
observed data. Returning to the iceberg data, it seems that the Bayesian inference is more
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appropriate, as we are faced with a data set that is unrepeatable, and we are interested in
an inference conditional on that data set. (Interestingly, it was argued during discussions at
the workshop that one could consider the observed 26-year period as one of a sequence of
26-year periods, in which case the frequentist inference maybe more appropriate.) If it may
be argued that either interpretation is valid, and hence either inference is appropriate, there
is no problem. As long as the methodology is chosen to appropriately answer the question
of interest, phrased in the manner of interest, the statistics have served their purpose.

5. AN EXAMPLE CONCERNING BREAKING WAVES

Hwang et al. (1990) report on an experiment concerning average height of breaking
waves, HB, measured as a function of RMS surface displacement, rl. The data are
presented in Figure 2. They conclude that HB<Hs, the significant wave height, where
Hs = 41", and state, "In a random wave field, waves that break due to local instabilities are
not necessarily the highest waves." Statistically, we can think of this as testing the
hypotheses

H0 : HB< 4 il vs HI: H 8 >4r1.

It seems here that frequency considerations are important, in that conclusions should apply
to repetitions of the experiment. This concern seems implicit in the above quoted
conclusion of Hwang et al. Thus, a frequentist analysis is more appropriate. Using a
standard linear regression model with Gaussian errors, we obtain a p-value of 0.999 for
the hypothesis H0 : HB < 471, showing that there is overwhelming evidence to support

Figure 2. Averaged
Breaking Waves height of breaking waves,

HB, as a function of RMS
water surface

a displacement, il. The line
shown is the least squares

7 line, with equation
H6 = 0.102 + 2.89TISe (r2= 0.994).

j4
33

2

0
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FREQUENTIST AND BAYESIAN STATISTICS 235

this hypothesis. (In fact, the hypothesis H0: H, < 371 yields ap-value of 0.911,
demonstrating extremely good support for this even stronger claim.)

Of course, a Bayesian analysis could also be performed, but the inference would not apply
to a sequence of experiments. The conclusions would be conditional on the observed data.
To do the Bayesian analysis we again use a standard linear regression model with
Gaussian errors, but we also assume that H. = bri, where b is a parameter with a specified
prior distribution. We specify the prior to also be Gaussian, and we take the prior mean to
be equal to the hypothesized value. (Thus, for testing H0 : H8 9 4%l; we specify a
Gaussian prior with mean 4. This strategy of centering the prior at the hypothesized value
gives equal prior weight above and below the value, and may be considered an impartial
prior specification.)

Combining our prior specification with the observed data, we calculate
Pr(b < 41 data) = 0.999 and Pr(b < 3I data) = 0.623. That is, for the specified priors and
conditional on the observed data, b is less than 4 with probability 0.999 and less than 3
with probability 0.623. Quantitatively, these conclusions are similar to those of the
frequentist, and show overwhelming support for the null hypotheses. The only difference
is in the scope of the inference.

Bayesian conclusions are, of course, dependent on the prior specification, and sometimes
there might be concern about oversensitivity to this specification. Such a concern is easily
addressed, however, by calculating posterior probabilities over a range of prior
specifications. This is illustrated in Figure 3, where we display the posterior probabilities
over a wide range of standard deviations. (The standard deviation of the data is 0.082, and
the graph shows the prior standard deviation up to twice this value.) The figure shows
that, for this range of prior standard deviations, the conclusions from the Bayesian analysis
are relatively stable in their support of Ho.
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6. AN EXAMPLE CONCERNING BUBBLE POPULATIONS

The distribution of bubble populations is also investigated by Hwang et al. (1990). They
collected data on bubble populations as a function of depth and wind velocity, as
presented in Figure 4. For a given depth Z (cm) and wind velocity u (m/s), the logarithm
of the bubble population N(Z) (log cm 3) is modeled as

N(Z)=a.+bkZ+E u = 10,11,..., 15

where c represents random error and is assumed to have Gaussian distribution with mean
0 and variance a2.

A question of interest is whether the distribution of bubbles is the same at each depth.
After some thought, it seems that the appropriate inference here is the frequentist
inference. Concern about the repeatability of the inference leads to this conclusion, as we
would like to be able to describe the bubble populations at a given depth and wind velocity
when such conditions are again realized.

6.1 A Standard Frequentist Inference

A standard approach to this problem is to decide if the slopes are the same at each wind
velocity, so we would test the null hypothesis H0 : bl0 = 41 = " = b,,. Doing so leads to a
p-value of 0.063, which suggests rejection of Ho. Thus a standard frequentist analysis
would lead us to fit separate regression lines for each wind velocity. So for each wind
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velocity we would use a separate regression equation to predict the bubble population.

See Table 2 and Figure 5.

6.2 An Empirical Bayes Analysis

The bubble population data are ideal for an empirical Bayes analysis--a mixture of
frequency and Bayesian analyses that combines the best features of each. Here we will
only briefly explain the methodology, for a more detailed introduction see the articles by
Casella (1985, 1992).

To perform an empirical Bayes, analysis we start with the frequentist model and inference
structure. We append a Bayes model to the slopes
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k - Gaussian (b, T2), u = 10,11,..-, 15,

that is, that the slopes come from a common Gaussian population with unknown mean b
and variance r2 .

The "empirical" part of empirical Bayesian is to now estimate these unknown parameters b
and T•2 from the data. (A standard Bayesian analysis would specify values for these
parameters.) Using these estimated values allows the data to assess the tenability of the
submodel, that the b,'s come from a common population. The empirical Bayes slope
estimates are a convex combination of the common overall slope (-0.048) and the
individual least squares slopes, given by

empirical Bayes slope = (0.221) (-0.048) + (0.0779) (least squares slope).

The weighting factors 0.221 (and 0.779 = I - 0.221) are data based estimates. The
empirical Bayes slope estimates are valid under the model of frequentist repeatability. In
fact, they are superior to the frequentist estimates using a criterion of expected mean
squared error. Thus, on the average, the empirical Bayes estimates will be closer to the
true values than the standard frequentist estimates. They combine the best features of
Bayesian modeling and frequentist inference.

Figure 5 also shows the empirical Bayes regression lines. Although they are not very
different from the standard frequentist lines, they do display a movement toward the
common slope value. The empirical Bayes analysis has uncovered a small amount of
common structure and has used this in improving each of the estimates.

Table 2: Coefficients for the standard regression analysis
(frequentist) and empirical Bayes analyses of the bubble
populations.

Wind empirical
Velocity n intercept slope std. dev. Bayes slope

10 4 0.666 -0.084 0.011 -0.076
11 5 0.924 -0.040 0.013 -0.042
12 4 1.594 -0.080 0.008 -0.073
13 5 1.669 -0.050 0.017 -0.050
14 4 1.698 -0.031 0.029 -0.035
15 4 1.635 -0.0009 0.027 -0.011
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7. CONCLUSIONS

The statistical methodology to be used, whether Bayesian or frequentist, should be
selected according to the type of inference that is desired (and is appropriate). The
frequentist methodology is appropriate for inference over a series of repeated experiments,
while the Bayesian methodology is appropriate for inference specific to the experiment
that was done. This article has given examples and provided discussion of situations where
each methodology is appropriate.

There is no brick wall between Bayesianism and frequentism. The methodologies are not
at odds with one another; they are complementary to one another. When approaching a
statistical problem "opportunism" is best. With that in mind, the appropriate analysis and
inference can be chosen from all available statistical methodologies.

Both Bayesianism and frequentism are built on a set of assumptions, some more palatable
than others. For a user of frequentist methods, perhaps the assumption most difficult to
believe is that the process (including parameter values) remains constant over the imagined
series of experiments. For a user of Bayesian methods, perhaps the assumption most
difficult to believe is that the prior distribution is correct. These assumptions, however,
can sometimes be checked and and maybe even relaxed. Moreover, their reasonableness in
any particular situation may also form a basis for choosing an appropriate methodology.
[See Berger's (1985) discussion of robust Bayesian analysis, which addresses these
concerns]. Lastly, there is an enormous amount of research being done in statistics, and
some of it is aimed at relaxing these assumptions. Such research has already given us
techniques like empirical Bayes analysis, a synthesis of both Bayesian and frequentist
methodologies which can often provide superior solutions.

This paper is technical report BU- 1187-M, in the Biometrics Unit, Cornell University.
This research was supported by National Science Foundation Grant No. DMS9100839
and National Security Agency Grant No. 90F-073.
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BAYESIAN METHODS: AN INTRODUCTION
FOR PHYSICAL OCEANOGRAPHERS

Joseph B. Kadane
Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213

"You could not step twice into the same river, for new waters are
ever flowing on to you," Heraclitus, as quoted in Bartlett (1980).

ABSTRACT

The Bayesian approach to statistics is a conceptually simple method of treating
uncertainty. It involves modeling uncertainty with probability, and conditioning on such
data as become available. Because of its flexibility, there are many styles of application.
Using the same examples as George Casella's paper in this volume, I discuss how this
Bayesian method approaches such problems.

1. A GENERAL INTRODUCTION TO BAYESIAN IDEAS

Most statistical analyses begin with some data, denoted x, and a parameter, denoted 0.
These may be discrete or continuous, and may have vector, matrix, or more complex
structures. For the purposes of this section, the nature of x and 0 do not matter, but in
application they are very important.

The mechanism generating the data is called the likelihood function, and is written
f(x1 0). Heref may be a probability mass function, if x is discrete, or a probability density,
if x is continuous. In both cases it describes the probabilistic behavior of the data, x, for a
fixed value of the parameter 0. The second part of a statistical model is a prior distribution
x(0), which again might be a probability mass function if 0 is discrete, or a probability
density if 0 is continuous.

These two ingredients determine the joint distribution of x and 0 as follows:

h(x,O)=f(xI O)n(O) (1)

Once the data x are observed, the laws of probability prescribe how the conditional
distribution of 0 given x is to be calculated:

241
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g(1 X) = h(x,6) h(x,O) f f(xI 0)z(e)
pWx) f h(x, 9)do f(x,)(O)d6 (2)

The distribution is called the posterior distribution of 0, because it is the distribution of 0
after having observed x. Thus the import of the data is to change the distribution of 0 from
the prior, x(0), to the posterior, g(8 I x). Everything in this paper is a discussion or an
application of these ideas.

The essential idea here is the use of probability to express uncertainty. Having decided to
do that, formula (2) follows from formula (1) by very simple and non-controversial steps.

One important matter is the interpretation given to probability here; whose probabilities
are these? Although there are some Bayesians who would give other answers, the
dominant answer now, (and the one to which I subscribe) is that these probabilities are
subjective, and reflect the opinion of the writec, or opinions the writer believes others
hold. Bayesians do not come to this view gladly. We wish there were a way to guarantee
that the equations written capture the objective truth, but such guarantees do not seem
possible. We observe in science disagreements in which none of the sides has made a
provable, mathematical error. The progress of a science might then be thought of as the
development of informed opinion on a subject.

The name "Bayesian" incidentally, is in honor of Rev. Thomas Bayes, an eighteenth
century English minister and "natural philosopher." He found the principle now embedded
in (2), and hence this way of thinking about and doing statistics is named for him.

Finally, note that the quantities x and 0 are simply random variables with some joint
distribution, although one is written with a Roman letter and one with a Greek letter. If
one began with the joint distribution h(x, 0) and learned 0, the posterior on x given 6
would be f(xI 0), and would represent what was known about x after 0 had been learned.
Thus the model is symmetric in x and 8, although to encourage intuition it is customary to
think of the former as data and the latter as a parameter.

In the remainder of this paper, I discuss Casella's iceberg example in section 2, breaking
waves in section 3 and bubble data in section 4. In section 5, 1 give my views on
frequentism and the possibility of compromises between Bayesian and frequentist ideas.
Finally in section 6 1 give my conclusions.

2. THE ICEBERG DATA

Before discussing the elements of a model, I think it is most useful to get the question
straight, which corresponds most closely to Casella's steps 5 and 6.
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Everyone with a modicum of liberal arts training knows about "compare and contrast"
questions. The point is that there are always similarities and always differences. Either can
be celebrated.

Looking at the graph of relative frequencies of icebergs, it is clear that most of the story
here is in the similarity of the patterns. But one could also look for differences, for the
"contrast." If you ask me to believe that the frequencies, month-by-month, of icebergs are
exactly the same to an arbitrary number of decimal places, I must reply that I cannot. Thus
I regard Casella's null hypothesis as foolishness. I put zero prior, and hence zero posterior,
on its truth. So I need a better question.

Suppose instead I ask what I consider to be a better question: how far apart are

eN = (W, .. C.1), frequencies of icebergs south of 48*N, and es = (" ... 2)

frequencies of icebergs south of Grand Banks? I could measure this in a variety of ways,
such as

12d, (.

and 12

d2 - ei8, -O'i.

Now a prior on (es, 0") and a likelihood on counts given (e , 0') will yield a posterior,
and I can compare what I thought about a distance measure d before I saw the data with
what I think after I see the data.

This is a measure of what I have learned from the data about how different es and 0N are.
So this is how I think a modem Bayesian would structure the problem.

What are the data? If they are a complete census of all icebergs from 1900 to 1926, then
we know that the hypothesis H0 is false. So suppose that these are a random sample of a
larger population of icebergs. How do these particular icebergs come to be in the data set?
Because someone observed them, presumably. Is it reasonable to assume that icebergs
have the same chance of being observed, regardless of month? I should think that the
summer months are easier to observe than the winter months, because more observers will
be around and weather conditions are better. The critical issue is whether the observation
bias, I should believe, is the same for the two areas. Thus if 0j is the probability of a
random iceberg in region N being there in month i, and if is the probability of its being
observed, then 1fs0' is the probability of an iceberg being there and being observed, and
the frequencies observed have probabilities
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12 9,N (3)

Note that if I believe that iceberg generation is constant by month (0#, = ... e,2= 1/12),
then w4' gives information about q's, the observation intensities. Which interpretation to
give to the data depends on what you believe. The Bayesian method can't say which is
right or wrong, but it does provide for (and insist on having) a full, probabilistic statement
of what the investigator believes. Reasonable people need not agree on these matters.
This allows readers to judge those beliefs, and possibly approximate the calculations the
reader might do with his own beliefs. The argument affects the likelihood as well as the
prior; both are subjective. Note that I now have more parameters than I have data points.
Hence a frequentist treatment of such a model is impossible. Frequentist analysis thus
encourages you not to delve too deeply, not to ask such questions.

Even the above formulation is too simplistic, since it assumes that the probabilities 0 and nj
are constant over years. Since during the period of the data collection both the sinking of
the Titanic and World War I occurred, it is hard to believe that -q, the observation
probabilities, were constant. A careful modeling of the data would have to take this into
account and would treat skeptically claims of a vast increase in icebergs in the latter half of
the period.

Priors on 0 are important for the inference in question. The first tool a statistician would
think of in this regard is a Dirichlet distribution (a multivariate Beta distribution) on the
vector (01,.. .,012). However the Dirichlet has some unattractive features for this purpose,
principally that it treats all the months symmetrically, without making use of the adjacency
of them. I would prefer to think of a continuous model in which the critical parameter is
an angle, which could be given a Fisher/von Mises distribution, which is like a normal (or
Gaussian) distribution for angles and has as hyperparameters a central tendency, v, and a
measure of spread, T2. Thus v would indicate the direction of greatest iceberg intensity,
thinking of time through the year as circular. Looking at the data, perhaps a good estimate
would be , = May 10. The measure of spread, T 2, would indicate how peaked the
distribution is. To complete the model, a prior on both v's (North and South), and
both T' would be necessary.

In these terms, I think that the quantity d3 = v- v would be useful as an alternative to
d, and d2. The main advantage of d3 is that its units are days, which is natural and might
have a physical interpretation.

It is now time to turn attention to inference, in Casella's sense. The frequentist statement,
applied to this situation, is that if the null hypothesis of no difference were true, and the
experiment were repeated an infinite number of times with the same parameter values, the
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data would be as or more extreme in only 1 - 0.977 = 0.023 proportion of the cases. Thus
the conclusion is that either the null hypothesis is false or something unusual has
happened. But frequentists cannot say which, or even give a probability on which. Note
that 0.023 is NOT the probability that the null hypothesis is false. Not believing H0, I
don't find this frequentist probability calculation useful.

Casella's version of a Bayesian treatment of this problem is not recognizably Bayesian to
me. All it does is condition on both margins in the table (total icebergs observed by month,
and total icebergs observed N and S), and then calculates a frequentist p-value. The only
warranted statement from his calculation is again that either something unusual happened
(with probability less than 0.006), or the null hypothesis is false. But again he cannot say
which, nor give a probability for it. I see no justification for Casella's statement that "the
probability of the null hypothesis is 0.994."

One interesting way to think about these statistical procedures is to ask what happens as
the sample size grows large. In frequentist statistics, no sharp null hypothesis (such as
0• = 0s) is significant if the sample size is small. However as the sample size grows large,
every such hypothesis will turn out to be significant. Thus significance measures sample
size more powerfully than it does the extent to which the "straw-man" null hypothesis is
false. Since better measures of sample size are generally available, significance testing is, in
my judgment, not very useful.

By contrast, in the Bayesian analyses I have been discussing, as the sample size grows, the
posterior distribution of whichever d you like will converge to a point. You will then
effectively know how far from true the hypothesis of equality is, by your chosen measure.
What to make of it then depends on what you are doing scientifically, whether you want to
emphasize the "compare" or the "contrast" side.

I have written at some length about the iceberg data because it gives me an opportunity to
illustrate how Bayesian thinking helps me to model a process. The important points, in my
view, are

* The frequentist hypothetical infinite sequence of identical circumstances is a figment
of their imaginations.

*. Priors and likelihoods are important because they correspond to something real:
what you believe about the data.
Frequentist ideas can get in the way of good modeling because you can easily get
too many parameters.
Testing sharp null hypotheses is generally a foolish undertaking, because they are
each, to a greater &r lesser degree, wrong.
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3. BREAKING WAVES

The principal difference between this example and the previous one is that the null
hypothesis is no longer sharp. That is, inferential attention focuses on a single parameter
b, and whether b < 4 or b _< 3.

Unlike Casella, I would not center the prior at the hypothesized value, but would instead
have it represent my honest opinion, or my view of what some other scientific opinion
might honestly be. My summary would be the posterior distribution on the parameter b,
from which one could calculate P(b _ 41 data), P(b 0 31 data), and any other probabilities
that might be of interest.

4. BUBBLE DATA

This is similar to the breaking wave data, except that there are several regressions instead
of a single one. Such a model is called hierarchical. These have proven useful in a very
wide variety of domains.

At the first level, the log bubble population is modeled as

N(Z) = A. + b.Z + C

where E is Gaussian with mean 0 and variance o-2, N(Z) and Z are observed, and a,, bu,
and a2 are parameters. At the second level, there might be a bivariate Gaussian
distribution on (a., bu) with some mean (a,b) and some covariance matrix 1. Finally, a
third level would specify a prior in (,,,b,1,a 2). Such a model is complete if each quantity
mentioned has a distribution. A complete model permits a Bayesian analysis, conditioning
on the observed data, as a Bayesian should. Interest may focus on the parameters at any
level: (a,,, bu) might be of interest, or (a,b), or any of the others.

5. ON COMPROMISES

As explained just above, a complete hierarchical model is fully Bayesian, and not a
compromise. "Empirical Bayesian models" are incomplete; they forget the upper levels of
a hierarchy and treat the remaining parameters frequentistically. There is no advantage to a
Bayesian in doing so. If the posterior distribution is peaked in the parameters taken to be
fixed, there may not be too much loss in this method as an approximation. However in
great generality estimates of uncertainty derived from the "empirical Bayesian method"
will be underestimates of the same measure derived from a fully Bayesian approach,
because parameters are taken as known with certainty that are not known with certainty.
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To be successful, a compromise must offer something to each party. Empirical Bayes
methods do represent a compromise on the frequentist side, because some (but not all)
parameters are treated as random variables with distributions. But to a Bayesian, this
"compromise" offers no advantages over a straight Bayesian analysis.

6. PRAGMATIC CONCLUSIONS

In principle, I am convinced that Bayesian ideas are the right way to structure thinking
about inference. We are still learning how to use this powerful tool in an effective way. If
the problem you have can't be done now in a Bayesian way, then you have to work your
problem as best you can, approximating a fully Bayesian analysis.

Even the pre-Socratic philosopher Heraclitus understood that frequentism does not apply
to oceanographic problems.

Research supported by NSF SES-8900025 and DMS-9005858, and ONR N00014-89-J-1851.

REFERENCES

Bartlett, John (1980). Familiar Quotations: A Collection of Passages, Phrases and
Proverbs, traced to their sources in Ancient and Modem Literature, 15th edition,
Little-Brown & Co., Boston, p. 70.

Casella, G. (1993). Illustrating Frequentist and Bayesian Statistics in Oceanography, this
volume.



A BAYESIAN APPROACH TO OBSERVATION QUALITY
CONTROL IN VARIATIONAL AND
STATISTICAL ASSIMILATION

Andrew C. Lorenc

Forecasting Research, Meteorological Office, Bracknell, England

1. INTRODUCTION

Bayesian methods are ideally suited to the ongoing operational data assimilation needed
for numerical weather prediction (NWP). Observational errors can be treated as random
variables, and we have a long experience of previous observations over which to build up
an estimate of their distribution. This experience tells us that observation error
distributions are typically non-Gaussian; there are more large errors than expected. It is
the handling of these gross errors that we call quality control. As well as the observations,
we also need, and have, much other information about the atmosphere. Indeed this prior
information is more valuable than that from the observations at any one time. We have a
forecast "background field," based on the accumulated knowledge from previous
observations, which is usually rather accurate. A forecast based on the background, with
no new observations, would probably be more accurate than one based on a batch of
observations, with no background. So it is essential to give proper weight to this prior
knowledge; the Bayesian approach allows us to do this.

In section 2 we review the Bayesian derivation of the posterior probability of atmospheric
states, and hence the equation used to combine observations and background to produce
an "analysis"' for NWP. With Gaussian distributions, the posterior distribution has mean
and variance given by equations which are often derived by a statistical approach, referred
to as optimal interpolation (01). For NWP we need to find the "best" analysis, without
necessarily evaluating the complete posterior probability density function (p.d.f.). This can
be done by a variational approach, which for Gaussian errors is shown to be equivalent to
01. With non-Gaussian errors, we have to be more careful in defining "best." Appropriate
definitions and their interpretation for multi-modal p.d.f.s are discussed.

In section 3 we introduce a simple model of observational errors as the sum of a no-
information distribution of gross errors and a Gaussian distribution of good data. Despite
its simplicity, this distribution has been found to be sufficient to derive an effective quality
control scheme for the majority of observations. The gross errors leads to a posterior
p.d.f. which may be multi-modal. Variational methods using a descent algorithm are not
guaranteed to find the best analysis.

This terminology is traditional in NWP. "Synthesis" would be better.

249
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The traditional approach to dealing with gross errors is to apply a quality control
procedure to reject "bad" observations, then to perform the analysis with the remaining
observations, assuming they have Gaussian errors. In section 4 we provide a Bayesian
justification of criteria for doing this. We derive an expression for the posterior probability
of gross error and reject a datum based on this. (A similar, but not identical, probability is
implicit in variational descent algorithms). The posterior probability can be evaluated for
gross errors in each observation-individual quality control (IQC), or for each
combination of gross errors--simultaneous quality control (SQC). The operational quality
control procedure at the Met Office is based on IQC, while that at the European Centre
for Medium-Range Weather Forcasting (ECMWF) is based on SQC. The approaches
differ subtly in the assumptions made about the posterior p.d.f when defining the "best"
analysis. More significantly, they differ in the further approximations which have to be
made in a practical implementation. In section 5, a simple example is studied illustrating
the differences between the variational method, IQC, and SQC.

2. BAYESIAN DERIVATION OF ANALYSIS EQUATION

This derivation mainly follows Lorenc (1986).

2.1 Notation

x atmosphere as represented in model
xt model representation of the true state of the atmosphere
Xb prior estimate of x, (e.g., from forecast)
y observations

Yt observations that would be given by error-free instruments
K(x) forward operator for calculating y from x
K tangent linear operator of K, such that K(x+8x)=K(x)+K&lx+O(8x2)
P probability
p probability distribution function
P(x) = probability that x<__xt<x+dx

= p(x)dx

N.B. We use x both for the vector of values and for the event x:xt<x+dx.

P(AIB) is the conditional probability of A, given B.

2.2 Probability equations

Probabilities are used in a Bayesian way to describe the state of information. We have
some prior information about x. We add to this information from observations y. We need
to know the posterior knowledge about x. Operator K does not have a normal inverse.
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From now on all probabilities are conditional on knowing Xb. To simpliy notation we
write P(-) instead of P(- I xb).

The basis of the derivation is the identity

P(xny)=P(xly) P(y) = P(y x) P(x)

= p(xI y)dx p(y)dy= p(y x)dyp(x)dx. (1)

What we want an expression for is

P(xly) =p(xly)dx, the analysis probability, i.e., the probability that x5Xt<x+dx,
given the background xb and the observations y.

We assume we know certain distributions, based on our prior experience and our
knowledge of the physics:

P(x) = p(x)dx, is the probability that x5-x1<x+dx, given only the prior knowledge
of Xb.

P(Y YI yn x) is the instrumental error distribution.

p(yt I x) is the forward operator error distribution.

From the last two distributions, we can find

P(ylx)=p(ylx)dy, the probability of getting observations y given x=xt.

P(yI x) = f p(y I y, r x) p(yt I x)dy,. (2)

From this, and our prior knowledge of x, we can find

P(y) = p(y)dy, the probability of getting observations y.

p(y) = f p(yI x) p(x)dx

= J" p(Y Iytn x) p(Y Ix)dyt p(x) dx.

Bayes' Theorem, which follows from the basic identity (1), is

p(xI Y) =p(yI X) p(x)/p(y). (4)
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We can substitute the expressions derived above to give

ANI Y) = f p(y ~ I y, nx) p(yt I x) dy, p(x) (5)ff. p(yl Iy, r)x) p(y t I x) dyt p(x) dx"

This p.d.f, describes our total posterior information about x, given xb and y.

2.3 Solution using Gaussian probability distributions

We assume K can be linearized in the region of xb and x. such that

K(xa) = K(xb) + K(x, - xb). (6)

We assume all the p.d.f s are Gaussian, and use the notation

N(xj m,B) =((2X)NI B 1)-"2 exp(--(x-m)m)) (7)1 2

where B is an NxN positive definite matrix, and IBI is its determinant.

We assume that we know

the background error distribution p(x) = N(x Ixb,B),

the instrumental error distribution P(Y) Yt nx) = N(y) Y1,O),

the forward operator error distribution Pf(Yt I X) = N(ytIK'(x),F),

where B, 0, and F are covariances.

Then, using the properties of Gaussians, the observational error distribution is given by the
convolution

P(Y x) :fp(y ytrnx)p(yIx)dy, (8)

= N(yI K(xt),O+F)

where O+F (=E) is the observational error covariance.

The observation distribution, only knowing xi,, is given by
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p(y) = N(yIK(Xb),O + F+ KBKT ). (9)

Substituting these into Bayes' Theorem (4) gives

p(xI y) = N(y IK(x,), O + F) N(xI Xb, B)/N(yI K(xb),0 + F + KBKT )

= N(xI x,,A). (10)

where x. and A are defined by

A= B-BK T(KBKT + 0 + F)-fKB

xa = Xb +BKT (KBKT + O + F)-'(y - K(xb)).

It is normal to assume that the "best" estimate ofx, is given by the mean x. of the
Gaussian posterior distribution. Thus using the above equation we can calculate X.
directly. Equation (11) is the "OF' equation, often derived as the minimum variance best
estimate, without relating it to the p.d.f. (10).

2.4 Non-Gaussian Bayesian analysis

If K is more nonlinear, or the p.d.f.s are non-Gaussian, then (10) and (11), capable of
direct solution, cannot be used. Although the Bayes' Theorem (4) for the analysis p.d.f is
still valid, the expression forp which results is usually too complicated to be very useful in
describing our knowledge about x; we want an estimate of the "best" x, without
evaluating the full p.d.f First, to define "best," we define a lossfunction L(xl,x) giving the
cost to us of making an estimate x, when the true value is x. The expected loss R is

R(xi) = j L(xlx) p(xl y)dx. (12)

The best estimate is the x, which minimizes this. In general this requires evaluating all of
p(xI y). This can be avoided by making L a negative delta function, so that there is a gain

from getting exactly the correct x, while all other values are equally worthless. With this
spike loss

L(x,, x) = 6(x, - x) (I13)
R(x) =-p~x Iy). (14)

Substituting in the Bayesian expression for p(xI y), and sincep(y) is independent of x, the

x that minimizes R(x) is the same as the x that minimizes a penalty functional 3 given by

S= - ln(p(yjx)) - ln(p(x)). (15)
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If we substitute the Gaussian p.d.f s of the last section into this, we get

-1= I(Y -K(x))T ( + F)_ (y -K(x)) +-I(xb_)TB1(bx)+cntt.16
2 2 (6

If, furthermore, we make K linearizable, we see why the linear problem with Gaussians is
easier to solve: -3 becomes a quadratic in x. Using the same algebraic manipulations as are
needed to establish the properties of Gaussians used in the last section, and the same
definitions (11) of x. and A, gives

I (xa - x) A-' (xa - x) + constant. (17)

For large problems it is easier to find x. iteratively, even if 3 is quadratic. If K cannot be
linearized over the whole range containing xb and possible xfs, then an explicit solution is
not possible. If K is still differentiable, so that

K(x + 6x) = K(x) + Kx, as 3x -- 0 (18)

then we can look for the minimum of 3 using a descent algorithm. At the minimum, the
gradient of S with respect to the components of x is zero:

' =-KT(O+ F)- (y- K(x))- B-I(Xb - X) = 0. (19)

This formula is exact; we can find the most probable x. The next stage of generalization is
to allow the p.d.f.s to be weakly non-Gaussian. That is, we use the Gaussian formulae
with 0., F., and B, being slowly varying functions of x, whose derivatives we can neglect.
We also neglect derivatives of K.. Then if we define x, as the x which minimizes 3, i.e.,

Z"=-KT (O, + F,. )-' (y - K(x B))-B(xb - x)= 0. (20)
Then

T3" = K.T (O. +FF.)-' K+B.+ ' = A-'. (21)

Then, in the neighbourhood of xa,

Pa (XI y) - N(x I xa,"-). (22)

If K is sufficiently nonlinear, or the p.d.f.s are sufficiently non-Gaussian, p. (xj y) may
have multiple maxima. We have then to consider how to decide which is best. We can
generalize on the spike loss, by allowing the loss function to be a Gaussian:



OBSERVATION QUALITY CONTROL 255

L(x1,x) = -N(xj x,L). (23)

As L tends to zero this gives us the spike loss. For the Gaussian analysis problem we can

evaluate the convolution explicitly:

R(x 1) = -N(xi lXa ,A+ L). (24)

Thus the loss is minimum when x, =x., as we would expect. We can use this expression to
help us in deciding between peaks in a non-Gaussian posterior p.d.f, by assuming that the
peaks can be approximated by a local Gaussian. We assume the spread of the entire
posterior p.d.f can be characterized by S (i.e., S describes the distance between peaks). If
L>>S then the loss function is quadratic over the range of significant probabilities, and the
best estimate is the mean of the full p.d.f (which may fall between two peaks). But if
L<<S then we may consider the peaks separately. Then if in the vicinity of the ith local
maximum the p.d.f, is

p(xj y) --_ P, N(xj xi,A, ) (25)

Then the loss associated with choosing the analysis to be at this maximum of p(xI y) is
given by

R(xi) = -Pi N(xl lxi, Ai + L). (26)

If S>>Ai>>L then R(xi) =- -P('xy), and the best peak is the highest. If Ai<<L<<S then
R() = -Pi x constant (independent of i), and the best peak is that with the largest area.

3. NON-GAUSSIAN OBSERVATIONAL ERRORS

3.1 Gross error model

Lorenc and Hammon (1988) introduced a simple model of observational errors: They are
uncorrelated, so that each observation can be considered separately. For each, either the
observation is good, in which case its error comes from a Gaussian, or it has a gross error,
in which all observed values over a range of plausible values are equally likely. Thus we
have (for "plausible" y)

p(yI x) = (1- P(G)) N(yI K(x),E) + P(G) k (27)

where E is the observational error variance (=O+F), P(G) is the probability of gross error,
x is the true value, and k is given by

f k dy = 1. (28)
plausible values
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3.2 Posterior p.d.f with gross errors

It is instructive to look at some simple posterior p.d.f s resulting from this model, before
going on to the full multivariate analysis problem. The simplest case is for a single
observation of one parameter, and a prior (background) estimate Yb (=K(x.)) from a
Gaussian distribution. Because P(y I x) is non-Gaussian, the shape of the posterior p.d.f.
depends on the difference between y and yb, as illustrated in Figure 1. Even in this, the
simplest case, there are multiple maxima, and there are configurations in which a
variational search, starting from the prior estimate yb, will not find the best value.
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Figure 1. The p.d.f.s for an observation, background, and Bayesian analysis for a selection of observation-

background differences o. The p d~f s are appropriate for ship observations of surface pressure, with

P(G)=O.05. (Lorenc and Hanmmon 1988).

Figure 2 shows a similar error model applied to two realizations, each often observations,
from an idealized Doppler observing system. With poor signal to noise ratio, P(G) may be
large for such an instrument; we have used P(G)=0.5. In the lower example, it is not clear
which is the "best" estimate; no method can consistently find it.
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Figumr 2. Two examples of p.d.fs from simulated doppler wind observations, with xt=7 , good obsevations
having E-9 and P(G)=0.5. (Dharssi ct al. 1992).

3.3 Variational descent algorithms in the presence of gross errors

Even in the top example of Figure 2 there are multiple maxima, which become more
obvious minima if we convert to a ln(p) penalty function 3, so a descent algorithm must
start near the correct value, if it is to find the absolute minimum.

Lorenc (1988) used an observational error distribution like (27) in a variational analysis
based on minimizing (15). The possibility of gross errors converts the quadratic penalty
finction of (16) into one with plateaus (Figure 3). If the current estimate in an iterative
algorithm is on one of these, the gradient does not well indicate which way to adjust
towards the minimum. Note that the width of the minimum depends on E, while the spread
of the deviations between initial estimate and observations depends on B+E. So if B is
large, the iteration may not move towards the absolute minimum. This was the case in the



258 LORENC

experiments of Lorenc (1988). He tried various methods to improve the first-guess of the
iteration, for instance by first setting P(G)=O, but with limited success.

Dharssi et al. (1992) had more success in their examples. In simple single value problems
like those shown in Figure 2, they found that increasing the observational error E in early
iterations helped the iterative estimate move towards the best value. In a two-dimensional
simulation of winds from a scanning lidar, they found that for relatively dense but
unreliable (P(G)=0.5) observations, the iteration did converge. It is an open question
whether descent algorithms, suitably modified in early iterations, will be sufficient for
practical applications, or whether we will still need the decision algorithms described in the
next section.

Lu /

-6 -9 -4 -3 -2 -1 0 1 2 3 I 5 6
NORNRLIZEO DEVIATION

Figure 3. Solid line: quadratic penalty function for a single observation, dashed line:
penalty function assuming a P(G)--0.05 (Lorenc 1988).

4. QUALITY CONTROL

4.1 Posterior probability of gross error

The posterior p.d.fs shown in Figure 1 are each the sum of two Gaussians, one
corresponding to there being a gross error (G), one corresponding to the observation
being correct (G). Lorenc and Hammon (1988) proposed applying Bayes' theorem
directly to the gross error event G:
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P(GI Y) = p(yI G) P(G)/p(y)

= P(yl G) P(G)/ (p(yI G) P(G)+ P(YI G) P(G)). (29)

Using (2), (27), and (28), we have
p(Yl G) = k. (30)

Using (2), (27), and (9), we have

p(yI G) = N(yI K(xb), E + KBKT) (31)

so (29) can be readily evaluated. The two Gaussians in Figure I are weighted by P(G y)

and P(GI y) respectively. Thus accepting or rejecting an observation depending on

whether P(G Iy ) is greater than or less than 0.5 is consistent with the "best" analysis in
terms of a Gaussian loss function, as discussed in relation to (26), as long as S>>L>>A.
This is the basis of the decision taking algorithms used in Bayesian quality control
schemes.

Dharssi et al. (1992) pointed out an interesting relationship between the variational
method and the posterior probability of gross error. If we calculate T using the error
model (27), then we get

' = -K (F,)- (y - K(x)) - B9- (xb - X) = 0 (32)

where the diagonal element of E., for observation i, is given by

(E.)ii = Ei / P(G-i I x rn Yi)- (33)

The Ei is the observational error variance of observation i if it does not have a gross error,
and P(G-i x ri yi) is the posterior probability that it does not have a gross error, given that

x=xt. We are effectively increasing the assumed error variance of observations that are
unlikely to be correct. (This is not the same as the artificial increase discussed in section
3.3, where Ei is increased when calculating Ei / P(GiI x) in early iterations, to aid

convergence towards the global minimum). Equation (32) has the same form as (19), so
by using (33) each iteration, a variational method for Gaussian errors is converted to one
for non-Gaussian errors.
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At convergence, there will exist a final estimate of P(GA I x n y,) for each observation. It
can be considered to be a variational quality control (VQC) decision about the
observations' quality.

4.2 Individual quality control (IQC)

Equation (29) can be extended to consider more than one observation. Lorenc and
Hammon (1986) give the derivation for two observations:

P(GI I y) = P(G1 Yl) / (P(Y) / P(Yd P(Y2 )) (34)

P(Y)/P(YI)P(Y2)= l-P(G--'I yd)P(02IY 2)(1-p(yIdGr)G2)/(p(y I GI)p(y21-G2))).

(35)

Ingleby and Lorenc (1992) give a more general derivation. The number of terms to be
considered in the extended equation goes as 2n, where n is the number of observations, so
evaluation of the exact equation rapidly becomes impractical. Lorenc and Hammon (1988)
suggest sequential application of the "buddy check" equation for two observations as an
approximation. This is the method used operationally at the Met Office. The decision
about whether to use each observation i is made individually, based on an approximation
to its posterior probability of gross error P(Gi I y). The analysis is then made using the

accepted observations, assuming they have Gaussian errors.

4.3 Simultaneous quality control

The 2n terms in the full expression for P(G,[ y) come from the various combiuations of

accepted and rejected observations. Each combination Ca is associated with a multivariate
normal distribution, each individually calculated using (10), so that the total p.d.f, is given
by Ingleby and Lorenc (1992):

2--1
p(x[ y)= Yp~x yrCa)P(CaIy). (36)

a=O

The posterior probability for each combination of gross errors can be found using Bayes'

theorem:

P(Ca iy) = p(yI Ca) P(C) / p(y). (37)

If we assume that each of the Gaussians which makes a significant contribution to (36) has
a distinct peak, then we can apply (26) to decide which gives the best estimate of x. If
S>>L>>A it is the one with the maximum P(CaI Y).
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Evaluating all 2n probabilities is impossible for large n. Since p(y) is the same for each Ca,

we can instead search for the combination with the maximum P(yI Ca) P(Ca). The states

Ca correspond to the vertices of an n-dimensional hypercube. One possible algorithm for

searching only a small subset of possible combinations is related to the SIMPLEX
algorithm in integer linear programming. We start with an estimate of the best, and then
search to see if any of its neighbours is more likely. Moving from one Ca to a neighbour

corresponds to changing the quality control decision on one observation, while keeping
those on other observations the same. If one of the neighbouring combinations is more
likely, we can then search its neighbours, and so on. This is the basis of the 01 quality
control algorithm of Lorenc (1981), which is used at ECMWlP. Rather like the variational
descent algorithms, this search algorithm relies on having a good first guess of the best C,
since there will in general be multiple local maxima.

5. COMPARISON OF QUALITY CONTROL CRITERIA

Figure 4 shows an example chosen to illustrate the differences between the approaches.
The solid line shows the posterior p.d.f. given by (36), while the dotted lines are the
constituent Gaussians. Variational analysis, using a spike loss function, will pick the
highest peak (VAN). Note however that a simple descent algorithm would have to start
quite close to XVAN if it is to converge to the correct value; starting from xb will not do.

Assuming this XwN is correct, all the observations have P(Gd IXVAN n y1 ) > 0.5, so if we

were to use this as an acceptance criterion, and do a Gaussian analysis using the
observations, we would get the value corresponding to the peak VQC.

Calculating the P(G I y) for each observation (IQC), the two observations of-9 both have

posterior probabilities less than 0.5 (i.e., they fail) while the observation of-6 just passes.
This pass is in part due to contributions from the possibility that the other observations
were actually correct; IQC can give inconsistent decisions.

Simultaneous quality control does look for a consistent decision; in this case the Gaussian
with the largest area is that labelled SQC. It corresponds to rejection of all the
observations, i.e., it is the background distribution. Note that the SIMPLEX algorithm will
not work well in this case. There is one local maximum for the combinations accepting
both observations of-9, and another for the combinations rejecting them both. The
SIMPLEX algorithm will converge to one of these; it cannot get from one to the other
because intermediate combinations (accepting one and rejecting the other) are less likely.
2The ECMWF scheme sets rejection tolerances directly, but an equivalent formation similar to (29) is
possible.
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Figure 4. Solid curve: P(x I y), dotted curves: P(x y Cr Ca ) for yi =-9, -9 and -6, xb =0, and other

values appropriate for sea-level-pressure observations (E=1, B=2.25, k=0.043, and P(G)=0.04), from
Ingleby and Lorenc (1992). For meaning of annotations, see text.

6. CONCLUDING REMARKS

We have shown that the Bayesian approach provides a sound method for combining
observations and background information. If distributions are Gaussian, it leads to the
statistical interpolation (01) equations and to a variational analysis with a quadratic
penalty function. It also indicates how the method can be extended to observations with
non-Gaussian distributions.

The proper "best" analysis depends on an appropriately defined loss function. Finding it
requires convolutions over the posterior probability de.,sity function, which for non-
Gaussian distributions is impractical. Variational analysis (VAN and VQC) and quality
control algorithms (IQC and SQC) are making approximations to the ideal loss function.
In NWP, we have a background ib which usually would lead to a forecast that is not too
bad. Large improvements on this accuracy are not required, so L=B. Individual peaks in
the p.d.f have Ai<B. So the assumption that the region of useful analyses is larger than
each peak, but smaller than the distance between peaks (S>>L>>Ai) may not be too bad
for NWP assimilation.
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There have also to be approximations in implementation; none of the methods can be
implemented perfectly in practical NWP problems. In the approximate forms discussed
here,

VAN and VQC use a descent algorithm, with a modified penalty function in early
iterations to try to get convergence to the best x from as wide a range as possible
of first-guesses. This has been tried on simulated data by Dharssi et al. (1992) and
is an attractive candidate for future variational NWP assimilation systems.

IQC, as used at the Met Office (Lorenc and Hammon 1988), uses a sequential
pairwise buddy check to approximate the method for >2 close observations. Some
tuning of this has been found to be necessary.

SQC, with a SIMPLEX search, does not necessarily correctly handle close
observations which agree with each other, but might both be wrong. The method
used at ECMWF (Lorenc 1981) is similar to this (although the rejection
tolerances are set directly, rather than via P(G)).

The Bayesian approach has allowed us to understand the relationship between these
different methods.

Acknowledgments. I am grateful to Imtiaz Dharssi and Bruce Ingleby for their
contributions to our joint papers quoted here, and to Jim Purser for initiating me in
Bayesian analysis and quality control theory.
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OPTIMAL SPACE-TIME INTERPOLATION
OF GAPPY FRONTAL POSITION DATA
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INTRODUCTION

The spatial and temporal variability of Gulf Stream meanders has been studied by many
including Watts and Johns (1982), Halliwell and Mooers (1979 and 1983), Olson et al.
(1983), and Cornillon (1986). The majority of these studies use the northern edge or north
wall, determined from the largest spatial gradient in advanced very high resolution
radiometer (AVHRR) data, as the Gulf Stream path indicator. The advantages of using
AVHRR data for locating the Gulf Stream are (i) the large contemporaneous spatial
coverage, (ii) the measurements have been collected daily since 1978, and (iii) the frontal
locations are the strongest signal in the data. The chief disadvantages are the amount of
processing (geometric corrections, cloud-screening/compositing, and manual digitizing of
frontal positions from images) required and that the satellite sensor cannot see through the
clouds. Consequently, there are large spatial (2-6 degrees) and temporal (3-6 days) gaps in
the Gulf Stream north wall position (GSNWP) data set. Mariano (1988 and 1990) devised
a new approach, termed contour analysis, for melding of oceanic data and for space-time
interpolation of gappy frontal data sets. The key elements of contour analysis are feature
matching and averaging in a coordinate system determined from the contour positions. In
applying his approach to the GSNWP, Mariano assumed a dominant one-dimensional east-
west phase speed in his algorithm. This assumption restricted the application of this
algorithm to other frontal data sets, such as the Brazil-Malvinus confluence (Garzoli et al.,
1992) where the north-south phase speeds are also important, and led to poor estimates of
the GSNWP when the north-south phase speed was significant.

The primary goal of this study is to develop an improved algorithm for space-time
interpolation of gappy frontal data sets. The major improvements are the inclusions of (i)
two-dimensional phase speed, (ii) a more autonomous algorithm, (iii) a better feature
macching algorithm, and (iv) the inclusion of a temporal smoothness constraint. The
space-time interpolator is formulated in the framework of probabilistic (Bayesian)
estimation. This report first reviews such an estimation theoretic framework and, in
particular, a Kalman filter-based interpolation algorithm. Then, feature detection and
matching algorithms are discussed, followed by presentation and discussion of some
preliminary results.
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BACKGROUND

The approach described in this report is a two-step process: First, the locations of the sea
surface temperature (SST) "edges" (gradient maximums) are detected and digitized by
trained personnel at the University of Rhode Island (URI). Then, the longitude-latitude
coordinates of the digitized points are interpolated by an autonomous computer program.
This report describes this second step-a probabilistic approach to the development of a
space-time interpolation algorithm.

The space-time interpolation problem is formulated as a quadratic optimization problem.
Here, we review how the cost function can be optimized using a Bayesian estimation
framework (with additive white Gaussian noise models) and how the solution can be
obtained time-recursively using Kalman filters.

1. Space-only interpolation

We first discuss the problem of interpolating points digitized from a single frame of image,
as this is the first step of our space-time interpolation algorithm. Let (ii,5),i = 1, 2,..... m
be the longitude-latitude coordinates of the digitized points. We assume, for the time
being, that the latitudesy of the GSNWP can be described by a function of the longitudes
x only, i.e., there exists a single-valued function y(x). This is a mathematically convenient
description used in the previous studies of Gulf Stream variability, but it is not always
appropriate for Gulf Stream meanders. The bi-variate formulation for multi-valued
features, such as "S" and "0" shaped meanders, is discussed after analyzing the simpler
single-valued case.

The functiony(x) is interpolated based on the measurements (i ,5j) by finding the function
that optimizes

min-v,[y,-yx)12 +J y +a.2 AY]xy (1)
Si=1 &

where Yi are the weights representing our confidence in the corresponding measurements.
The two integral terms, weighted by the parameters 01 and o%, control continuity
("tension") and linearity ("smoothness") of the interpolated curve, respectively. This
optimization approach finds applications in general geophysical interpolation and
variational problems (e.g., Inoue, 1986).
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2. Maximum likelihood estimation

To obtain a numerical solution of Eq. (1), the longitude is discretized as
x = jAx, j = 1,2..., n.. The interval Ax is chosen small enough for the discrete domain to

include (within a reasonable quantization error) the measurements as {i I c {x(jAx)},

which implies m < n-the number of points to be estimated is usually three to four times
the number of data points. The corresponding latitudes are represented by an
n-dimensional column vector y whose elements are y(jAx),j e [1,n], while the

measurements of the latitudes are organized as an m-dimensional vector z whose elements

are y,ieJ [1,m]. A discrete version of Eq. (1) is

mia~lS~I 2 1 S 12 I H1 2

i ay 1 1  S2Y + +11 z - Hy (2)

where the vector-norms are weighted 2-norms, e.g., i z - Hy 1 - z- My)' MMz- Hy).

(The superscript Tdenotes matrix transpose.) The matrixes S, and S2 are the first and
second order difference operators, respectively, while M is a diagonal matrix whose
diagonal elements are the measurement weights vi,i e [I,m]. The m x n matrix H is the

data-estimate correspondence operator whose (ij)th element h,, is defined as

j =11 if 'i = jAx (3)
0 if otherwise.

The process of determining the matrix H-the correspondence problem--is

straightforward in this case where the latitudes are treated as a function of the longitudes.
Some GSNWP features, such as an "S" shaped meander, can make the correspondence
problem quite complex. Mariano (1990) showed that detecting and matching such features
based on the sparse sets of data points are the key (and most difficult) components for a
successful interpolation scheme. Our solution to the correspondence problem is presented
in the next section.

The minimizing solution ý of Eq. (2) is exactly the maximum likelihood estimate y based

on the observation equation

z H vH

0OJ _S 2 - L v 2
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where the additive observation noise vH, v,, and v2 are mutually independent zero-mean
Gaussian random vectors with covariance MW, a,'l, and a•ml, respectively. The solution of
this probabilistic estimation problem requires minimization described in Eq. (2) (Lewis,
1986); thus, the maximum likelihood formulation based on Eq. (4) constitutes a
probabilistic interpretation of Eq. (2). An advantage of this probabilistic version is that the
estimation error covariance can be computed, along with the estimate itself, allowing us to
quantify confidence/uncertainty in the solution. For Eq. (4), the optimal estimate .ý and

estimation error covariance P are given by

= L1-HTMz (5)
P = L-1 (6)

where L =_ HTMH+ caSTISI + a 2S S 2 is a sparse penta-diagonal matrix. Alternatively, the

minimization problem Eq. (2) can also be reformulated as a Bayesian estimation problem
in which the first two terms in Eq. (2) are interpreted as the prior statistics for the
unknown y (Szeliski, 1989). Both the Bayesian and maximum likelihood formulations are
equivalent when Gaussian noise models are used, as they yield the same solution.

In terms of selecting the parameters for the interpolation problem, the probabilistic
formulation must be specified slightly more precisely than its variational counterpart: In
Eq. (2) the weights oc,, %-, and M are only required to be specified up to a multiplicative

constant--only the ratios among the weights need to be controlled. The same parameters
in the probabilistic formulation Eq. (4) play the roles of noise covariances whose values
(not just the ratios among them) must exactly be given. This extra bit of precision is
necessary for the computed P to be interpreted meaningfully as the estimation error
covariance.

3. Time-extension and Kalman filtering

Equation (1) can be extended temporally to perform space-time interpolation fory(x, t)
using an additional continuity constraint over time:

min Y, Y vi (k)J~i - y(ii,(k), kAt)1 a + PJ, ydxdt (7)

k=1 i=1 I [a la

where the time variable is discretized as t = kAt, k = 1, 2,..., K and the variables associated
with the measurements are indexed by k. In the GSNWP estimation problem, At is two
days. The parameter #I controls the strength of the temporal constraint.
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A discrete and probabilistic interpretation of Eq. (7) can be obtained by supplementing Eq.
(2) with an evolution equation (8) representing the time-continuity constraint. The result is
a stochastic dynamic system indexed by the time variable k:

y(k) =y(k - 1) + w(k) (8)

zk (k)] VH (k)]

0z )][ y(k) + v, (k) (9)
oJ v2 (k)J

where w(k) is a zero-mean Gaussian random vector with covariance P'l. Representing
the space-time interpolation problem as a dynamic system is attractive because the Kalman
filtering algorithm (Gelb, 1974) allows computational efficiency (time-recursive
computation) and flexibility (filtered, predicted, and smoothed estimates). Numerical
solution of the space-time interpolation Eq. (7) is given by the smoothed estimate, which
can be computed as a linear combination of forward and backward filtered estimates based
on the system Eqs.(8,9): Let of (k), Pf (k)) be the estimate-covariance pair (the forward

estimate) produced by the Kalman filter based on the system equations. Then, Eq. (8) is
replaced by a backward dynamic equation y(k) = y(k + 1) + w(k + 1) to compute the
backward filtered estimates and covariances (Ob (k), Pb (k)). The smoothed estimate-
covariance pair (j(k), P(k)) is given by

ý(k) = P(k){Pi"(k)ys(k)+ P,-(k)yb (k)- HT (k)Mz(k)1, (10)

T TST-1S

P(k)={Pj1(k)+Pb1(k)-H (k)MH(k)-aISrS, -a 2SS 2 }S . (11)

Detailed derivations can be found in textbooks such as Lewis (1986) and Anderson and
Moore (1979).

Figure I a illustrates that the formulation Eq. (7) performs adequate interpolation for a
simple ideal case in which y is in fact a function of x. Here, for each integer value of
x E [1, 100] and t e [1, 10],y, is computed as

Y = (I +u) sin , 2 0 r) exp1 (-1T )

where u e [0,0.2] is a uniformly distributed random number. The "measurements" are

made by selecting 25 points along the curve for each t (Fig. la). All measurements over
the 10 time-frames are shown in Figure lb by superposition. The interpolated curve (the
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Figure 1. (a) An example of space-time interpolation using the formulation Eq. (7) is shown as the solid
curve. The dotted curve is the "truth" while the circles are the "measurements" made in this particular
time-frame. The dashed curve is a result obtained by adding the "temporal linearity" term (cf. Eq. (15))
into the formulation. (b) All the "measurements" superimposed over time.
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solid line in Fig. I a) estimated the crests of the waveform reasonably well. The parameters
used were M = I, a = 0.01, o =1, and P, = 0.1.

FORMULATIONS

1. Bi-variate unknown

Problems with uni-variate formulation (i.e., assuming that y is a function of x) include
inability of representing certain frequently occurring shapes of meanders (e.g., large "S"
and "f" shapes) and inability to model uncertainty in the measurements of the longitudes
x. The spatial domain of interpolation must be dynamic, rather than fixed, to correctly
assimilate measurements in time under temporal movements of the GSNWP. A dynamic
reference frame is crucial to GSNWP interpolation as smoothing over a fixed spatial grid
will smear out meanders and other important shape features along the contours, as
described by Mariano (1990) in a more general context of data melding. It is an adaptive
("object-oriented") reference frame similar in spirit to the Lagrangian frame. Unlike typical
Lagrangian formulations, in which physical motion models are available, our problem must
deal with phenomenologically characterized motions of the GSNWP contours, making the
formulation challenging because of lack of accurate mathematical models.

We will convert Eq. (7) to a bi-variate formulation. Let p(s,t) = [x(s,t),y(s,t)]T be the
true contour location, where the spatial domain s is the arclength along the contour at a
given t. We denote the points digitized from the k& SST image as Pi (k),i E [l,m(k)]. The
bi-variate version of Eq. (7) is

K n(k) 2

min Y vi (k)IIA (k) - p(s, (k), kAt Al
P k=1 i=1

+ rTif a + a d 2 + 2 ] 
(12)

This minimization is more complex than Eq. (7) because s#(k), the spatial coordinates (in
terms of arclength) of the digitized points, are unknown. Specifically, the origin of the
spatial index s is difficult to define, since there is no guarantee (even though it is a
reasonable assumption for the Gulf Stream) that all contours pass through a given point
(i.e., the origin) on the x-y plane. Also, s,(k) must be determined concurrently as the
contours are interpolated. The arclength, in fact, cannot be specified exactly without
knowing the contourp(k) itselfl A Kalman filter-based solution for Eq. (12) becomes an
adaptive filtering/smoothing problem:

p(k) = p(k- 1) + w(k) (13)
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[q(k)] H(p(k),k)] [v (k)J
= S1 p(k)+ v, (k)/ (14)

0 S 2 I-V (k ) J

where the components of the vector q(k) are , (k),i r, [Lm(k)]. Note that the data-
estimate correspondence matrix H(p(k),k) is now dependent on the state p(k).

Clearly, Eq. (12) must be optimized adaptively: For each k, either of s,(k) and p(k) is
estimated alternately using the best guess for the other, and this process is iterated for a
fixed number of times or until an agreement between the two estimates is obtained within
an accuracy parameter. Because of the gaps in the measurements, the estimates at the
previous frame (i.e., j(k - 1)) are often the best estimates of the general shape of the
contour at the current time. Thus, the problem of establishing correspondence can be
approached by incrementally matching the best available estimate of the current contour
based on the previous contour and that based on the spatially sparse measurements. This
important feature matching problem will be addressed in the next section.

2. Imposing linearity over time

Once the data-estimate correspondence is established, it is straightforward to expand the
dynamic system formulation Eqs.(13,14) to incorporate various structural models for the
GSNWP contours. For example, we can impose a linearity constraint over time by
inserting an additional integrand term

211 d,(15)

to Eq. (12). The corresponding change in the dynamic system is augmentation of the state
vector; the dynamic equation is changed to

p(k+l)][= -21][p(k-1)]+ WI](k) (16)

p~k +1 1 - p(k) I w2 (k)j

where w,(k) and w2(k) are zero-mean Gaussian random vectors with covariance
WP'I and P2-'I, respectively. Equation (16) can be written in a more attractive form which
includes the local displacement d(k) a p(k + 1)- p(k) as the extra component of the state
vector. The estimates of the local displacement field are of interest in their own right for
statistical characterization of Gulf Stream dynamics. The resulting reformulation consists
of a modified dynamic equation and an additional row in the observation equation:
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d k)--0 1~dk k- 1) Lw. k)] 17

0 = d(k)+ v(k) (18)

where v.(k) = -w,(k+ 1). By replacing Eq. (13) with Eq. (17) and adding Eq. (18) to Eq.
(14), we can jointly estimate the GSNWP p(k) and the local displacement d(k). This
formulation is the same in spirit as the approach used by Mariano (1990), except that the
formulation presented here uses two-dimensional (bi-variate) displacement vectors, instead
of one-dimensional in the previous approach, and that the presented formulation is optimal
in the least square sense.

The formulation based on Eqs.(17,18) is applied to the uni-variate example in the previous
section, i.e., a temporal linearity constraint (i.e., Eq. (15) imposed ony instead ofp) is
added to Eq. (7). The dashed line in Figure Ia shows one of the resulting interpolated
curves. The figure shows that the curve has gained more "stiffness" and the crests of the
waves are estimated more accurately with this extra constraint (dashed line) than without
it (solid line). The parameter used for the constraint was P=0. 1.

FEATURE MATCHING

This section describes an approach to establish the data-estimate correspondence. For
conciseness in discussion we discuss the filtering problem based on the dynamic system
Eqs.(1 3,14). As mentioned before, we adopt an adaptive filtering approach where best
predictions of the GSNWP contour at a given time-frame k are used to estimate the
positions, i.e., arc-length indexes s#(k), of the measurements along the contour.
Specifically, two rudimentary contours, one predicted ahead in time based on the
estimated contour at k-I and the other interpolated only over space based on the
measurements at k, are "matched" for correspondence, allowing incorporation of the
measurements to update the predicted GSNWP estimate. In another words, the matrix
H(p(k),k) in Eq. (14) is evaluated as H(j/ (k - 1),k) in the forward filter and as
H(0b(k+ 1),k) in the backward filter, where of (k) and Pb(k) represent the forward and

backward filtered estimates, respectively. The two contours are matched hierarchically-
using larger-scale "features" first and then smaller, more local, inflections of the curves.

1. Feature detection

Large bends, especially those at the apexes of the meanders, are the major features along
the GSNWP contours. Although these features are always associated with relatively large
values of curvature (second-order derivative along the arc), such local attributes alone are
not necessarily useful in isolating large meanders among a variety of contour inflections
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with much smaller magnitudes. In fact, the magnitudes of the inflections themselves can be
used to identify the meander features more directly. These magnitudes are computed as
the deviations from a progressively fine-scaled, piece-wise linear approximation of the
contour shape. Specifically, consider a segment of the curve between two arbitrary points
p(sa) and p(sb). Let the deviation C(s,s,Sb) be the (perpendicular) distance from the point
p(s) along the segment (s e [s, s 1]) to the line connecting points p(s0) and p(sb), as shown
in Figure 2. The points along the curve where large deviations occur are used to segment
the curve into a piece-wise linear "skeleton", exemplified in Figure 3. Those points
associated with large deviations are the nodes of the skeleton of the curve. The following
is an iterative algorithm to compute the set of nodes, or node set, given the tolerance
parameter E for the deviations:

I. Initialize the node set with the two end-points of the curve.
2. Let the number of nodes in the set be L. Let the indexes of the nodes be s, so that

st < s~f +,) for t = 1, 2,..... (L - 1).

3. Find the maximum deviation d* over the entire curve, i.e., for e = 1,2,..., (L - 1),

d* = max max C(s, st,s~t+l))t S

Let s* be the spatial index for the point where the maximum deviation occurs.
4. If d *>E, include s* into the node set; then, go back to step 2 and repeat. Otherwise

(d*•<E), stop.

The internal node points, p(s 2), p(s 3), . . ., p(sL.i), after the final iteration are referred to as
the feature points.

2. Feature matching

Let us consider matching feature points from two curves. Each feature point is at the apex
of a corner on the skeleton of a curve. A cost is assigned to each of possible matching
pairs of feature points as a sum of the costs associated with the distance, angle, and
direction of the corner. Let p(a) and p(b) be feature points from each of the two curves.
Each feature point, sayp(a), is a junction of two line segments of the skeleton; let the two
unit vectors pointing along these line segments and originating in the feature point p(a) be
U., and u, 2. Let UbI and ub2 be similarly defined unit vectors around the feature point p(b).
Also, we measure the direction of a vector v as the angle (v) in radians (in the
longitude-latitude coordinate system). The costs are defined as
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A

Figure 2. ý(s,sa, or sb ) equals the length of the line segment SC, where points A, B, and S correspond
to p(s), p(s.), and (Sb), respectively.

'S
'5

S

Figure 3. The contour is segmented by the set of nodes (s, s2'.... The dashed line represents a skeleton
for this contour.
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1. Distance. C,= 1ip. -pf

The distance between the pair of points.
2. Angle. C2 = (LZ(u . , ) - Z(u..)I - [4ubl) - L(ub2 1) 2

The absolute value of the difference between the angles of the comers associated with
each of the two feature points.

3. Direction. C 3 = L/(u1 . + U. 2 ) - L(Ubl + Ub2)2

The difference between the directions of the openings of the two comers, i.e., the
directions of the vectors bisecting the angles.

We penalize large values of these cost functions more heavily (i.e., more than by a linear
proportion) than relatively small values. This is achieved by post-distorting the cost by a
piece-wise linear mapping function, such as t.t shown in Figure 4, which discounts
smaller cost values and inflates larger values uy multipliers (slopes in the figure) smaller
and larger, respectively, than 1.

The pairs of feature points with smaller total costs (the sum of three post-processed cost
functions) are considered to be matching pairs, with the following constraints:

"* The total cost for any matching pair must be smaller than a specified value, which we

will refer to as Cm,,.

"* A feature point cannot be matched to more than one other feature point.

"* The line segments connecting matched feature points can never cross each other.

The last constraint reflects the structural integrity of the meanders (features): The
GSNWP meanders can only appear and disappear; they cannot change their sequencing
order along the contour.

To summarize, the number of the parameters to be specified for feature point matching is
10: C,,a, and the two multipliers and a threshold value (the slopes and "th" in Fig. 4 for
each of the three cost functions C1, C2, and C3 .

3. Local matching

Once correspondence of major features is established, non-feature points can be matched
by a simple proportional mapping, leading to a correspondence match of the two contours
in their entireties. In Figure 5, for example, the pairs of points (A,A') and (BB) represent
matched feature points, and arc-length indexes s and s' along the two contour segments
between the respective feature points are considered to be a matching pair if
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C..

diL C

Figure 4. A typical mapping function f'or postprocessing of the cost "C" (representing Ce, C2, or C3).
The values smaller than the threshold "th" are discounted while values larger are inflated.

B

A

A'

Figure 5. Mapping contour segment AB to segment A'B'.
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• I

S- - A = S - - A4  ( 1 9 )

SB - SA SB - SA

where sA, sA, s', and s' are indexes of the feature points.

Unfortunately, matched pairs of feature points are sometimes too sparse to be able to
guide correspondence of the two contours reliably: Distance between adjacent feature
points on a contour can be larger than the phenomenological length scale, a gap in
measured points can occur between feature points, and some measurements do not contain
any significant meander features.

To remedy this, we need a secondary method to register the indexes for two given
contours without relying on feature identification and matching. One way of performing
such a task is to deform one of the contours toward another using a variational
formulation involving cost terms for structure of the deformed contour and for distances
between points on two contours. Let pl(s) and p2(s) be the two contours to be matched
and p(s) be a aeformation ofpl(s). The deformed contour p(s) inherits the indexes of
p,(s); thus, by physically registering p(s) onto p 2(s), correspondence between the two
index sets can be found. [Such a technique for contour registration is generically known as
"snake" in computational vision (Kass et al., 1988)]. Specifically, we consider the
optimization problem

11 ~d q2 d
minJ F(p2,p)+c + - a2 + 2P fcas

+r0lip-pi12+ r+ -as(P-PI) 2 + Y2 (p-p,) 2ds (20)

11 ds 11 ds 1

where the "gravity" term F(p2, p) works to minimize the distances between points along
p(s) and P 2(s) and is given by

F(p2 ,p)_f exp (-1-l lp(s) -p2 (s-P)jj 2 &1(21

The domains C, and q2 of the integrations are given by the contours p, and p2.,
respectively. The three cost terms, with coefficients yo, 71, and y2 contain the shape of p(s)
from becoming radically different from that ofpl(s). The minimizing p(s) is given by the
non-linear Euler-Lagrange equation
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-2 d, 1)~+ YoA+1 F~2p
((22

Y2 Y0 (22)

which, since p is the only variable, can be written concisely as

2 (X2+y 2 ) -( a + Yl)- + YO -=0F(p)=0 (23)

where

Given a parameter ic, Eq. (23) can be solved iteratively (Kass et al., 1988) as

2[(a. Y2 ) d4 (al~, T+92 +
+ (24)

- ~+ ICP - a- P ~~-

which is equivalent to Eq. (23) if pt -- p as e -ý -. Given P(e-,, Eq. (24) can be solved

simply by inversion of a Hnear differential operator as

2~ ((25)

= p+ o(pt - Pe-)

which we have implemented numerically. The iterations are initialized with p0 = p•-
Graphically, as the iterations progress, the contour p, (s) approaches p2(s) in a structually

constrained manner (from which the name "snake" is derived). When K is large
convergence is slow; when it is small the solution becomes unstable. We have chosen a
relatively small value of K for the first few iterations and then a larger value of K for the
rest of the iterations to ensure convergence. We used a total of about 20 such iterations
per solution of Eq. (22).
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Figure 6. Examples of interpolated GSNWP contours (solid lines). The small circles are the digitized data
points. The cross hairs along the 32°N lines are the standard deviations associated with the estimated
contour points directly above them. The lengths of the two arms of each cross represent standard
deviations in the estimates of the longitude and latitude associated with the estimated point.
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RESULTS

Equation (12), along with the feature detection and matching scheme discussed in the
previous section, has been used to interpolate 150 frames of data from the period April
1982 - February 1983. Figure 6 shows two of the interpolated GSNWP contours along
with the digitized data points (small circles), indicating that the bi-variate formulation is
able to reconstruct macroscopic features like the "S" and "Wi" shapes by interpolating data
from nearby time-frames. The data points from nearby frames are shown in Figure 7. Also,
the standard deviations (produced by the Kalman filter-based algorithm) in the
longitude/latitude estimates of selected points are depicted in Figure 6 by the crosshairs
(see the figure caption). As expected, the standard deviations are larger away from the
data points and smaller near the data points.

The algorithm has been tested further by "hind-forecasting": a particular frame of data
points is removed, and the contour in that frame is then predicted by interpolation based
only on data in other frames. Ideally, the predicted contour matches well with the actual
data points which did not participate in the interpolation. (Note, however, that the
digitized points in a given frame can sometimes misrepresent the true frontal location
because of imaging noise, inconsistency among the personnel who perform the digitization
task, etc.) Figure 8 shows the hind-forecasted contours of the same two frames as those in
Figure 6, while Figure 9 (cf. Fig. 10) shows the hind-forecasts for another pair of frames.
In these figures, the data points match fairly well with the hind-forecasts, and, in fact, the
agreement between the data and hind-forecasts is observed generally throughout our test.
There are, however, several inconsistent hind-forecasts, two of which are shown in Figure
11 (cf. Fig. 12). As indicated in the figure, a major flaw in these hind-forecasts is inability
to resolve some fast movements of the meanders and to detect transformations of the
meanders into rings. Obviously, simple smoothness constraints like those in Eq. (12) by
themselves are not able to handle events such as formation of rings and are heavily
dependent on the data to resolve such events.

DISCUSSION

Although the present-day pattern recognition and matching algorithms have yet to realize
flexibility and sensitivity of trained personnel, major advantages of a mechanized system in
GSNWP estimation are speed, objectivity, and consistency, which are important in high
volume production of the estimates. Also, a probabilistic formulation, such as that
presented in this report, yields a measure of confidence in the estimates in the form of the
second order statistics to facilitate interpretation of the results. We feel that such a
statistical interpretation will be enhanced if the uncertainty (noise variance) in each
digitized data point is quantified by using a probabilistic edge-detection algorithm (e.g.,
Canny, 1986) on the SST images. A new edge detection algorithm using both spatial and
temporal constraints is being tested by Cayula and Cornillon (cf. 1990) at URI. A
symbiotic merging of such an edge detection with our interpolation algorithm should
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Figure 8. Hind-forecasts for the two frames in Figure 6.
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Figure 9. Two more examples from the hind-forecasting test.
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Figure 11. Two cases where hind-forecasts have failed, due to temporal Gulf Stream dynamics
unresolvable ftrom this particular data sequence.
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reduce the effect of inconsistencies in the initial frontal locations. We are also considering
a higher order model for contour dynamics (Pratt and Stern, 1986) as an extension of the
work presented in this report.

In the near future, all available digitized frontal locations in the Gulf Stream, Brazil-
Malvinus confluence, and Kuroshio current systems will be interpolated. The
spatial/temporal variability and phase speed distribution of the resulting complete frontal
locations will be documented.
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SOME NOTES ON DATA ASSIMILATION
IN PHYSICAL OCEANOGRAPHY

James J. O'Brien
Mesoscale Air-Sea Interaction Group, The Florida State University, Tallahassee, FL
32306-3041

INTRODUCTION

This paper is a discussion of the author's emphasis on data assimilation in physical
oceanography. The work draws on recent work by members of the MASIG Team. Our
approach has focused on time-dependent models in which parameters are estimated
through data assimilation using the variational adjoint method.

It is useful to adapt a paradigm for classifying all data assimilation methods. I chose to
define three groups of assimilation schemes: (A) local polynomial interpolation methods,
(B) statistical (including optimal) interpolation methods, and (C) variational numerical
analysis methods.

In (A), the idea is to expand the data misfit in terms of some interpolating polynomial in
the spatial vicinity of the data location; direct insertion or substitution or "bogusing" are
some simple examples; Cressman filters are a commonly used meteorological assimilation
technique. No knowledge of the statistical property of the data or the model is used.

In (B), we use statistical information of the data error field or the model variability to
determine the adjustment in space and time. In principle, one could estimate the cross-
correlation function of the data misfit and adopt some rules to adjust the model solution.
The simplest idea is the so-called nudging method where an inverse-time parameter is used
to estimate the variability of the data misfit. The most sophisticated example is the
Kalman-Bucy filtering method. In all the implementation schemes one should imagine that
the physical model is evolving in time, and a moment arrives when a data value is
encountered. The data misfit is then added to the model field in time and space. If the
covariance matrix structure is primarily spatial, then the simplest time structure for the
variability is nudging where a linear time decay processes is added to the prognostic
model.

In (C), the assimilation scheme defines a statistically weighted data misfit field, which is
minimized in a construct such that the complete physics of the prognostic model is
included as dynamical constraints. I will concentrate on examples of this latter method.
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THE VARIATIONAL ADJOINT METHOD

The essential ingredients in this data assimilation are a "nice" model, availability of some
"useful" data, and a willingness to adjust the model in some manner. Each of these
elements must each be appreciated. The model should produce validated solutions that are
reasonable and "liked." The data may be estimates of model-dependent state variables or
the data may be any function of a dependent state variable as long as an estimate of the
function can be calculated from the model output. A simple example would be ocean
altimeter cross-over data. The difference in time between two altimeter readings at a point
can be estimated from the solution to any ocean model that simulates sea level, and
therefore altimeter cross-overs can be assimilated.

For a contrived example, let us consider the following model. Suppose a scalar field,
c(x,:), is advected by an unknown advection field, u(x), and other processes are
represented by g(c,P) where P is a poorly defined parameter. We "like" our model after we
guess ui and the initial conditions, c'(0,x). We acquire some data, F'(c), where F(c) is any
function of c which we can estimate from the output of c(x,t). The model is

c, +uc. = g(c,A). (1)

There are many avenues to arrive at the variational problem. I choose simply to write
down the functional

T

H (c,A,Xu, f3 =~ + uc, - g) dxdt
XI

T + f -c F '(c) -P(C dX dt
Xt2

X.1 2
TrK

+1f 2 (2)

where X(xt) is a Lagrange multiplier, Kc, Ku, Kp are called Gauss precision modulae. The

range of space is over all x, say, x c [0,L] and periodic, e.g., c(tx) = c(t,x+L). The last
three terms are called the cost function, which is to be minimized subject to the contraint
that the data, F, and the advection function, u, and the parameter, p, must satisfy the
model. The range of time is [0,7]; Tis a time later than the last observed datum.
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The minimum is determined by the usual approach,

dH
,. yields c, +uc, = g(c,3) (3)

where u and 0 are now not known.
-1 yields u(x) = u'(x) - f Ax., dt (4)

where we observe that the correction of u from its guess field depends on the average of
the product of the Lagrange multiplier and the spatial gradient of the dependent state
variable.

-Hyields=Ji'- TLK----dxd (5)

and

yields + (uA)- + K,[F(c) - F(c)] (6)

+f A(O, x) c(0, x) dx + c(O, x)dx.
x

The next to last integral vanishes using the lemma that a product vf periodic functions is
periodic. We have used the natural spatial boundary conditions for A and chosen
A(Tx) = 0. Note that the last integral is zero except at I = 0.

The solution procedure is as follows:
1. Guess u', 0', c'(Ox) and calculate the solution forward over the time [0,7] from Eq.

(0).
2. Calculate the data misfit, F-F, and the data misfit transfer function, F, and integrate

Eq. (6) backwards in time from T to zero.
3. Next adjust the initial conditions and u(x) and 03 using Eqs. (4, 5, and 6) (for c(,x)).
4. Repeat 1,2, and 3 as often as desired in order to assimilate the data, F(c).

There are many advantages to this algorithm. It will almost always converge; thus all the
data are used and it is eloquent. I am told that one can contrive a case where it will not
converge. There are some disadvantages. It is very expensive because we have to integrate
two models and save the solution from both models, particularly when the physical model
is nonlinear. It may take many forward and backward integrations to find the miminum.
An emphasis of current research is to identify algorithms which find the minimum in as few
integrations as possible. The present view is to implement an efficient conjugate gradient
algorithm. A further disadvantage is that this method is difficult to teach to scientists. We
are beginning to have several simple examples that will demonstrate the method to
scientists.
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A SIMPLE REAL OCEAN EXAMPLE

There have only been a few modem superb upper-ocean data expeditions that have
measured meteorological and upper ocean currents. One such experiment is LOTUS from
which Briscoe, Price and Weller have provided us data to develop data assimilation
methods. Suppose we wish to assimilate wind and ocean current data and determine the
momentum drag coefficient and the mixing function for momentum, A(z).
The model equation is

dw (A- W (7)

where w = u + iv. The boundary conditions are at

z= 0, and p Aw = - (8)

where the wind stress is calculated from

r= PoCIWaIWa.

At the bottom

z =-H, and A - = 0. (9)

The initial condition for this dynamic system is at t = 0 and w w0.We chose to
nondimensionalize the system as follows:

t' tW, = , Z.= A ,=.E ,2w.
=-t =-U'Z=-, A =_s , CD c__' W o=

Tf U D 5 a S, Ua

where

Tr =f- D=.•f and U = C U.1

which yields the model
- +iw= a( A ) (10)

with

_ ww for z =0

A--d 0 forz =-H (11)
D

and w=wo fort=O.
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Following the formalism developed in the previous section, we define the cost function, J:

J (w, A,CD) I Kmff(W~V)2 d~dt
tZ (12)

+ KaTf (A -2dý+ 'K TH(CD - CD)

2 z2

The functional, L, is the sum of the cost function and the constraint

L(w,A,CoX) =J+ffIA(Llfv A (13)

The solution is found as usual by solving

dL(wA,'cDA) -0

dL(w,A, c,A) -0
aw

dL(wAcDA) -0
dA

dL(wA,cD'A) -O.
dCD

This yields the modei plus
A + A + a (AA

+= K, (w- (14)

CD =CD + KTH J (1.I auaxuo + 1.IvaI;a,,O) dr (15)

A=A+---1 f &I A",V dr. (16)

K.T , ( -zdz dzýdz

Note that we have assumed that cD is a constant and A is only a function of depth. We can
rescale the parameters, K, by using

_ K K-=A', -- =Kc, and -= K.
Km Km Km a-
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This yields
OA A

+ýi+ (A•-j)=(w- ) (17)

CD = CD + K-•H I (jw.ju.A) +Iwolv.Aj.o)d? (18)

A=A+-- - idr. (19)

In order to solve these equations we need to define a solution space. This is shown in
Figure 1.

Ai -r z=0
A --, -W j=2 -.£ Az~

As ...... j-

------ ------------------W2------------

As j=3

- -----.-.--- -WJ-- -------------

-- -- -- -- -- --- * WJ-----------------------------

AJ+i j=J+l fi-H

Figure 1. Diagram of the vertical structure of the numerical model.
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Our procedure for using the variational method to solve this system can be fully described:

(1) Begin with a best initial estimate for the control parameters A and cD.

(2) Integrate the model equation (7) forward in time and calculate the value of the cost
function.

(3) Compute the data misfits (w -,).

(4) Integrate the adjoint equation (17) backward in time.
(5) Use equations (18) and (19) to calculate the gradients of the cost functions VJ

corresponding to A and cD with solutions for X and w from steps (2) and (4).
(6) With the gradient information, apply the descent algorithm to obtain the new values

of A and cD simultaneously.
(7) Check if the minimization process is done. The convergence criterion is satisfied if

IVJI/IVJ0I < l0', where VJ0 is the value at the initial iteration.
(8) Return to step (2) if the optimal solution is not found.

We will demonstrate a solution using currents over 10 days in the summer in the North
Atlantic during the LOTUS experiment. Figure 2 shows the observed currents at 5 and 15
meters. Only a low frequency trend has been omitted from the original data. The cost
function is shown and the gradient are shown in Figure 3 as a function of interation. Note
that the cost function reaches a "practical" minimum in four iterations. The profile of the
eddy viscosity coefficient and the drag coefficient are shown in Figure 4. The surface value
of 0.003 implies an "Ekman Layer Depth" of about 6-8 m. The comparison of the
assimilated data with the data is shown in Figures 5 and 6. It is seen that the model
reproduces the current meter data above 65 m quite well and very poorly below. This is a
simple example of ocean data assimilation. This research is available in detail in Yu and
OBrien (1991). In Yu and O'Brien (1992), we also change the initial condition with
improvement (Table 1). There are additional, completed examples of this work showing
how to assimilate sea level. In this report I have not tried to reference all the important
works by other research teams.

Table 1.
Change of Correlation Coefficient with Depth

Depth Z New r* Old r
5 0.92 0.87
25 0.88 0.81
35 0.71 0.67
75 0.34 0.28
95 0.53 0.44

'MaxA 1.4 x 10-3  2.9 x 10-3

CD 1.2 x 10-3  1.3 x 10-3

* Initial condition adjusted.
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Figure 2. Current observations at 5 m (top) and 15 m (bottom).
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Figure 3. The variation of (left) the cost function and (right) the gradient with the number of iterations.
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Figure 4. (left) The variation of the eddy viscosity coefficient during the iterative process, and (right) the
variation of the drag coefficient with the number of iterations.
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Figure 5. Comparison of modelled (solid lines) and observed (dashed lines) current speeds u (left) and v
(right) for 5, 15, and 25 m.
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Figure 6. Comparison of modelled (solid lines) and observed (dashed lines) current speeds for u (left) and
v (right) at, 35 and 65 m.
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ABSTRACT

An objective procedure is presented which allows the systematic determination of free
model parameters in numerical models. A nonlinear inverse technique is applied to fit the
model to observations. Optimal values for the free parameters are found in a systematic
way by minimizing the least squares distance between modeled and observed data.

The method is applied to a general circulation model (GCM) of the Atlantic Ocean. The
GCM includes an embedded mixed layer model based on the equation of turbulent kinetic
energy. A number of free parameters describe, e.g., the efficiency of wind stirring, decay
scales of turbulence, and so forth. They are determined by fitting the annual cycle of the
modeled mixed layer depth to climatological data. The parameter values and their error
covariance matrix are computed.

INTRODUCTION

Adjustable model parameters are involved in almost all numerical ocean models. As an
example, horizontal exchange of momentum or of tracers that is due to small scale
processes is commonly described by a diffusion term. Another example is the drag
coefficient that is used to convert surface wind speed in the atmosphere to surface stress of
the ocean.

These parameters may serve different purposes. The diffusion coefficient is primarily
intended to describe directly the effect of mixing and stirring. On the other hand a much
larger coefficient may be necessary to insure numerical stability or damp out computational
modes. It is therefore necessary to define exactly the purpose of the parameter involved
before values are assigned to it.

Values are often chosen according to the intuition of the modeler. If the intuition fails, a
small parametric study may help. One example for this type of study is the treatment of
bottom friction. Here models are frequently "tuned" by trying out a few bottom friction
coefficients that span two or three orders of magnitude. The coefficient that leads to the
"best results" is then chosen.

Parameters of mixed layer models have been tuned to fit the data of a certain location, such
as Ocean Station Papa (Martin, 1985), or of the equatorial Pacific (Garwood et al.,
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1985a,b). Some of the parameters, such as the efficiency of wind stirring min. can be
measured in laboratories. It is now our task to find out if the same values are applicable in
the context of a global model.

An objective way to fit models to data is the application of inverse techniques.
Distributions of active or passive tracers may be inverted to derive flow velocities and
diffusion coefficients (Wunsch, 1985, Fiadero and Veronis 1984, Olbers et al., 1985). In
these inversions more or less complicated models are applied. In the following we will
describe a method to determine free parameters of highly nonlinear models. The technique
is iterative and very general. In the example given below it is applied to a mixed layer
model that is coupled to a general circulation model. Following ideas suggested by
Tarantola and Valette (1982), a sequence of linear subproblems is solved wherein each
solution is a compromise between observation and prior information.

A brief summary of the general circulation model and the mixed layer model is given in
the next sections, followed by the presentation of the data, the inverse method and finally
the results.

ISOPYCNIC OCEAN CIRCULATION MODEL

A general circulation model that uses isopycnical coordinates in the vertical was used in
this study. The model was developed by Oberhuber (1993a,b) and is known under the
name "OPYC." It includes an ice model with viscous-plastic rheology. The surface layer is
modeled as a fully active mixed layer of variable depth in which temperature and salinity
may change arbitrarily. The mixed layer is coupled interactively to the ice model as well as
to the deeper, isopycnic layers. One of the intentions in deriving the isopycnic model is its
use in climate studies. For this purpose the model formulation was made rather complete.
It combines primitive equations and the full thermohaline dynamics, a realistic equation of
state, convection and detailed mixed layer dynamics with an isopycnical description of the
deep ocean. Topography is arbitrary.

An early version of the model has been applied to the tropical Pacific (Miller et al. 1991).
The most intensive studies were, however, performed in the Atlantic Ocean. The model
has been described in detail in Oberhuber (1993a,b). The present study was undertaken in
support of the model development and an earlier version of OPYC was applied. The
results presented here are, accordingly, only preliminary and the successes of the isopynic
model should be judged by the more recent work of Oberhuber. The model version used
here has a horizontal resolution of 2' by 20 and seven vertical layers. It covers the Atlantic
Ocean from 30°S to 80°N where it is closed by artificial boundaries.

The model is driven by surface fluxes of momentum, heat, fresh water, turbulent kinetic
energy, and buoyancy. The fluxes are calculated from monthly mean climatological values.
Windstress is taken from Hellermann and Rosenstein (1983). The other fluxes are based
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on the COADS data set (Woodruff et al., 1987). The climatology was calculated by Wright
(1988) for the years 1950 to 1979 on a 20 by 20 grid. From these Oberhuber (1988)
derived all other quantities necessary to drive the model.

MIXED LAYER MODEL

Mixing in the surface layer is caused by turbulence generated by wind stirring and
buoyancy fluxes. The turbulence produces a uniform vertical distribution of temperature
and salinity. However the turbulent kinetic energy (TKE) may vary with depth within the
mixed layer. Models of the mixed layer are generally based on a budget equation of the
TKE: The input of TKE at the surface is balanced partly by dissipation and partly used for
the production of mean potential energy by the entrainment of underlying denser water.
While wind stirring always acts as a source for TKE the buoyancy flux may change sign.
Cooling and evaporation act as production terms while precipitation and heating of the
surface layer increase the stability and limit vertical mixing. When the warming is
sufficiently strong detrainment occurs. A new shallow mixed layer is established in which
the input of TKE by the wind is used to distribute the heat vertically and produce potential
energy. In OPYC the underlying old mixed layer is redistributed into the isopycnic layers
below. While entrainment is modeled prognostically the detrainment is treated separately.

At an early stage in the development of OPYC the mixed layer models of Kraus and
Turner (1967), Niiler (1975), Niiler and Kraus (1977) and Garwood et al. (1985ab) were
applied. The experience gained from these models led to a new formulation for the mixed
layer equations. The major process that governs the mixed layer depth (MLD) is the
entrainment/detrainment cycle. Additionally, the model includes changes in MLD due to
convergence of mass or heat.

The entrainment rate w is modeled by

whg' = wRi.#, (Au 2 + Av2) + 2m,,aul + hbe(B - "Bs)

+beyBs[h(l +exp(h))- 2hB(1 - exp(hhJ] (1)

- 12 M- mo'Qy - dh - d'

7

where

= (2)

B L (aQ+ ()CPP-
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R=- (P - E) (4)
S

CP/ (5)

a = exp f!L'
K 14)(6)

b.exp(-hLf B<0b=,{e h hf B>0exp( -1 - (7)

the h is the MLD, g' the reduced gravity between the mixed and the underlying layer. The
critical Richardson number (0.25) is denoted Ric~i, Au and Av are the differences in the
horizontal velocities between the mixed and the underlying layer. The friction velocity is
denoted u., B is the total buoyancy flux through the surface comprising the total heat flux
Q and the equivalent heat flux R due to the fresh water flux (P-E). The buoyancy flux Ah is
produced by the solar radiative heat flux Q,; y describes the fraction of solar radiation that
is not immediately absorbed and that enters the ocean. The scaling depth for the penetration
is hB. If the MLD is sufficiently shallow, lower layers may gain heat by solar radiance. In
the term involving Ty the northward component of the planetary rotation C£y allows the
exchange between horizontal and vertical turbulence according to Garwood et al. (1985ab).
The two dissipation terms d and d' will act proportional to and independent of the MLD,
respectively.

The finding that less turbulent kinetic energy is needed for mixing at high latitudes than at
low ones is modeled as an efficiency term which depends on the Ekman scale. Two
functions, denoted a and b, describe which part of the kinetic energy input is available for
conversion into potential energy at the mixed layer depth h. They describe an exponential
decay that depends on -hf I Ku. wheref is the coriolis parameter. Functions a and b differ
in their length scales K and y. Here negative buoyancy fluxes are treated like wind stirring
(function a) while a positive buoyancy flux such as cooling is considered to be more
efficient (function b). Buoyancy fluxes can be scaled independently from wind stirring
with the coefficient e.

When sea ice is present additional terms appear in eq. (1) (Oberhuber, 1993a). In this
study, however, these terms were not treated as variable and are not shown here for
simplicity.
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In the detrainment phase, the entrainment velocity w is set to zero and eq. (1) is solved
diagnostically. Additionally the resulting Monin-Obukhov depth is bounded for small
values by the MLD due to vertical velocity shear hRi:

hR, = Ric,(A u 2 + Av 2) / g'. (8)

The set of adjustable parameters under consideration now consists of the efficiency of the
wind stirring at the surface mro, the decay scales K and u which determine the decay
functions a and b, the fraction y of the solar heating B, and its penetration scale hB in the
ocean, the efficiency e of buoyancy forcing, the coefficient c that governs the TJ',, term,
and the two dissipation coefficients d and d'.

DATA

Climatological hydrographic data compiled by Levitus (1982) are used to determine the
annual cycle of the MLD. The problem is that measurements based on turbulence are not
available for the whole area of the Atlantic Ocean. Instead our definition must be based on
the effect of turbulence on the vertical structure of mean quantities. Several ways are
possible to define how deeply the surface layer is mixed. A common approach is to define
the depth of the mixed layer as the depth at which either density or temperature deviate
from their surface value by a certain margin. When the bottom of the mixed layer is
characterized by large steps in mean values of temperature and salinity the choice of the
criterion is not critical. However, a definition of the measured MLD based on temperature
differences will work more reliably in low latitudes, whereas for high latitudes with their
low vertical temperature gradients a criterion using density differences is preferable. As our
model includes latitudes up to 80 degrees north, we have chosen a difference in 0, to
define the mixed layer depth.

Monthly mean values of temperature and salinity are used to calculate the mean density
profile at standard levels. Linear interpolation is applied to determine the depth at which the
density differs from the surface density by 0.125 kg/m3. Values of the MLD of less than
10 m were set to 10 m while values higher than 400 m were excluded from the
comparison with modeled MLD.

Figure 1 shows the monthly distribution of the measured MLD. January is depicted in the
upper left panel, April in the upper right, etc., until December in the lower right comer.
Contour lines are at every 100 m with additional contours at 25 m and 50 m. The MLD in
the Gulf of Guinea is always shallower than 25 m. Values increase poleward to over 400
m at the northern wall. Main features are a shallow mixed layer in the equatorial band and a
strong seasonal cycle in qiid latitudes.
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Figure 1. Monthly mean depth of mixed layer derived from climatological data of Levitus. The depth
is defined by a density difference of Aoa, = 0. 125 kg m-3. Upper left: January to lower right:
December. Contours at 25, 50, 100, 200, 300, 400 m depth.

OPTIMIZATION METHOD

Parameters are found objectively by minimizing the rms misfit between modeled and
measured MLD. The method involves an iterative technique wherein first the model
sensitivity is calculated and second the optimal set of parameters is estimated, followed
again by a sensitivity analysis, and so forth. Prior information on the set of parameters is
taken into account by using the error covariance matrix during the optimization (Tarantola
and Valette, 1982).

After choosing a first guess for the parameters the full coupled sea ice-mixed layer-
isopycnic model OPYC is integrated. After five years of model time the mixed layer has
reached an almost cyclo-stationary state. Monthly averages of the MLD of the last year,
denoted as ho,, are stored for future computations.
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To find the minimum of the data misfit the model is linearized around its current set of
parameters. For this purpose all parameters under consideration are perturbed individually.
For each perturbation OPYC is integrated for five years. This integration period seemed to
be necessary for the MLD to come to a cyclo-stationary state after major parameter
changes such as the introduction of the rfl, term. To ensure that differences in the MLD
result from parameter changes and are not due to an undetected trend in the model, the
same initial conditions and integration time as in the control experiment are used in the
perturbation runs. The differences hi between the modeled MLD of the last year and k0 are
stored again.

Our linear model for the MLD then consists of the reference solution plus a linear
combination of the perturbations

h.(X)= ho + xi. (9)

The vector X consists of n components xi. They describe which fractions of the parameter
changes applied to calculate hi are used to compute the linear approximation h,,o of the
MLD. For the linear model the data misfit Jdat can be written as

jd* = (h1ho)T W(h _h)
=(h. li JkT  W( _hoXJk.) (10)

with a diagonal weighting matrix W defined as

= 10m( ) I. (11)

The weights are proportional to the area represented by the measurement. They are
normalized with a uniform rms of 10 m. The errors are assumed to be uncorrelated. Of
course the weighting can be changed to represent the error of the individual estimates of the
MLD. For instance a weighting proportional to the MLD itself was tried out as an
alternative to (11). The change in the optimal parameters was, however, small. The
sensitivity of the results to the choice of W seems to be low. Of course the absolute values
in W are important only in comparison to the standard deviations si of the parameters.

The si are used to describe our a priori knowledge about the different parameters. This
information is built up during many previoup iterations and model reconfigurations. As the
result of early iterations some of the parameters were discarded (e.g., by putting them to
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zero) or fixed to specific values. Values for the remaining parameters are known better and
better during the iteration process. Furthermore the sensitivity of the MLD to changes in
the parameters is known from previous experiments. This information is used for the first
guess and the variations of the parameters.

The total function to be minimized consists of the data misfit and an additional
regularization term, which penalizes the deviation of the solution from its first guess,

J'o. = Jd, + X T SX (12)

where S = diag (ar'2 ) is the inverse of the a priori covariance matrix of X. The minimum
of Jtot can easily be found by setting the partial derivatives to zero.

dJ0°, = -2 (h, _k_.HX)TWH +2XTS= 0 (13)

where the matrix H consists of the MLD differences hi. Solving (13) for X yields

AX = Y (14)

with
A=H T WH+S (15)

and
y=(h -ho) T WH. (16)

From the retrieved X we can directly calculate the optimal set of parameters.
For the estimation of the a po-.jý.r'ori error covariance matrix E of X we apply the singular
value decomposition of A. The advantage of this approach is that we can easily use
alternative truncated solutions with their resolution and error covariance analysis (Wunsch,
1989).

A=UA VT (17)

where U and V consist of the eigenvectors of A. Eigenvalues A, are stored in descending
order in the diagonal matrix L. E can now be calculated as
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E ((.i -X), (I X)') (18)

E= x)02
= -y-"i• jvivT~

iIk~

ST

i a2

if

S-1 =21 (19)

The only problem that remains is to find suitable perturbations of the parameters, which
turns out to be quite an art. A lot of intuition and experience from previous iterations is
involved. The difficulties in deriving a "reasonable" set will become clear in the following.

First, it is better to interpolate than to extrapolate: When we calculate the local gradient of
the MLD only small perturbations are used and the computed hi will be small, in general.
In order to produce MLD differences of appreciable size the corresponding xi must be
large, i.e., >>l. With these large coefficients the linear model h,,o extrapolates and the
MLD will be quite different from the nonlinear OPYC using the optimized parameters. In
some areas the extrapolated h,, is considerably deeper than in its neighborhood or, on the
contrary, may even become negative. The reason for this unrealistic behavior lies in the
strong nonlinearities of the mixed layer dynamics. For every gridpoint there is a time in the
seasonal cycle when the entrainment period terminates and detrainment occurs with a
corresponding rapid change in the MLD. This decrease is often on the order of 100 m. A
small perturbation in the model parameters will change the MLD both in the entrainment
and the detrainment phase only slightly. However, it will shift the onset of the detrainment
by a few days. For these few days we compute large differences in the MLD which
multiplied by x» >> I produces unrealistic results. Reducing the perturbations only
intensifies the spiky appearance of the hk and makes the response more local in space and
time. As we will see below the error between modeled and measured MLD consists partly
in a bias and partly in a phase shift. Such a phase shift cannot be modeled successfully with
spiky hi. As a consequence we impose a constraint to ensure that the modeled MLD will be
an interpolation between meaningful solutions and no extrapolation:

0:< x, _<1, i=l..n (20)
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The changes in the parameters applied to compute hi must be chosen accordingly. Ideally
the xi should be approximately 0.5 at the solution to ensure a good compromise between
gradient calculation and interpolation. Constraint (20) implies that for positive and negative
parameter disturbances separate model integrations have to be performed.

Only a limited number of perturbation experiments were done because every run requires
several hours of CPU time on a Cray computer for the integration of OPYC. Therefore we
restricted the number of perturbations to the minimum. Only when it turned out (which it
frequently did) that a perturbation was of the wrong sign or was made too small was a new
model integration performed and the set of hi augmented.

Because of the constraint (20) the solution of (13) is slightly more complicated than
described previously. If the optimal xi turns out to be zero we need another perturbation run
for the corresponding parameter with a changed sign; xi = 1 on the other hand makes a
larger perturbation necessary. Rather than overwriting the corresponding h/ we set the
corresponding xi to zero and augment the set of variables. The frequent changes in the set
of hi make it necessary to retain all information until the final solution is found. Of course
optimal parameter changes cannot be positive and negative at the same time. In this case
the smaller change is discarded. The optimal xi then consist of a number of zeros and
values smaller than one where only nonzero values are used for the solution. Once the final
set of variations xi and hi have been found we can again apply equations (13) and following
to compute the solution and its error covariance matrix.

It is still possible to find gridpoints where h(X) behaves unreasonably. For instance, in the
control experiment an area might be marginally unstable and convection produces a deep
MLD. In most perturbation runs convection does not occur and we have a situation where
locally many hi are large (and negative). Their weighted sum may produce an h < 0, that is,
a negative thickness. A similar argument can be given for extremely deep values for the
linear model. To safeguard against such a behavior we could add another constraint

n

Xxi -< (21)
i=1

The disadvantage of (2 1) is that the solution now may depend on the number of variable n.
Also we expect reasonable values of the xi to be around 0.5. These disadvantages are
avoided by requiring that h,,, lies in the same depth interval as the measurements, i.e.

10 m:5 h., <400 m (22)

Values which violate (22) are excluded from the calculation. Thus the number of 20 by 20
boxes involved in the optimization may vary during the iteration.
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RESULTS

a) Early results

It was soon found that some of the parameters retrieved were close to their theoretical or
their values measured in laboratories. Therefore y was set to 0.42 and Ricri, to 0.25. Both
parameters were considered fixed subsequently. Another early result was the latitude
dependence of the damping terms a and b. Attempts to model them independent of op
failed. A scaling depth depending on udf, i.e., a scaling proportional to the Ekman depth,
was clearly superior. Accordingly, damping independent of q1 was no longer pursued.
Value for the damping parameters d and d' were determined to be very small and we set
d=d'=O. In the same way an independent efficiency parameter e for buoyancy was found to
be unnecessary and e was fixed at unity.

b) Reference solution

The modeled MLD is depicted in Figure 2. It shows the same characteristics as the
measured MLD (Fig. I). The shallow equatorial MLD with little seasonal variation can be
clearly seen. Farther north the annual cycle is the dominant signal with deepest values in
March and values below 25 m during summer. In the South Atlantic, values below 25 m
occur during Austral summer, i.e. December to February. High values for the MLD are
found north of 500 N during winter and spring. These are also the areas of highest error in
the MLD where the model is much too shallow compared to observations (Figure 1).
Farther south the errors are smaller with the exception of a phase error in the retreat of the
MLD at 200 N during spring warming.

Modeling of the mixed layer temperature (Figure 3) is relatively successful. In comparison
with measured sea surface temperature, we find errors below 1 K for high temperatures.
Errors increase to the north where they reach -4 K (model too cold) at 60°N. Both model
deficiencies have been reduced noticeably in the meantime. The major improvements were
due to the removal of the northern wall in favor of modeling the Arctic Ocean together with
the Atlantic (Oberhuber, 1993b).

Details of the annual cycle of the MLD are difficult to perceive in Figures I and 2. Isolines
are gappy because of undefined values. To give a clearer picture, a number of Hovm(inler
diagrams are shown below that depict conditions along 30*W as a function of month.
Diagrams of measured and modeled MLD are given in Figures 4 and 5, respectively. We
notice measurements of a deep mixed layer in winter increasing to the north. Maximum
values are found in April when the depth of 200 m extends south to 40*N and the 100 m
isoline almost reaches 20°N. During warming in spring and summer the depth is reduced
gradually until minimal values are found in July and August. The seasonal cycle of the 100
m isobath is modeled fairly well. A deeper mixed layer is underestimated and a shallower
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C:

Figure 2. Monthly mean of modeled MLD. Upper left: January to lower right: December. Contours as
in Figure i. The MLD is shallow at the equator and becomes deeper in the region of the trade winds.
Farther north the annual cycle is prominent with very deep MLD during winter.

MLD is overestimated. In most of the northern hemisphere the seasonal cycle is
underestimated (Figure 6) while in the southern hemisphere little variation is observed.

For completeness the Hovmorler diagram of the mixed layer temperature along 30°W is
given in Figure 7. In the northern hemisphere temperatures are lowest in March and
warmest in August. The seasonal cycle is most pronounced around 30*N. Differences
between modeled mixed layer temperatures and sea surface temperature measurements are
given in Figure 8. Throughout the year the error is always below 1 K in the region south of
40°N. The annual cycle is mostly visible in the error around 60*N, i.e., close to Greenland.
During winter and spring the model is too cold by up to 4 K and the error is smallest (1 K)
during November.
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Figure 3. Monthly mean of modeled mixed layer temperature. Upper left: January to lower right:
December. Contour interval 50 from 00 to 250, additional contour at 27.50. The general temperature
distribution is close to observations except in the Gulf Stream region and in the vicinity of the
northern boundary.

c) Perturbation experiments

After many iterations, five parameters remained to be determined by optimization. They
were m,, hB, c, ic, and y. Their a priori values and variances were chosen according to
our knowledge gained so far (Table 1). Parameter disturbances were taken as twice the
respective rms, which implies expected rms values of all non dimensional xi of 0.5 to fit
our requirements for interpolation. The corresponding a, 2 of matrix S are then 4.0. We
will now discuss the results of the sensitivity experiments, i.e., the fields hi. Again
Hovmoller diagrams along 30'W are chosen to show both the annual cycle and the
latitudinal dependence of the MLD differences.
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Table 1. Values and standard deviations of estimated parameters
Parameter a priori a posteriori

mean rms mean rms
K 0.4 0.083 0.396 0.027

MO 1.2 0.2 1.060 0.129
hB [fm 10 2.5 8.077 1.640

A 5 2.2 3.541 1.395

The result of a change in in,, from 1.2 to 0.8 is depicted in Figure 9. The decrease in the
input of wind-induced TKE at the sea surface leads to a corresponding decrease in the
MLD over the whole area. Values range from 5 m at the equator to 50 m at 500 N. The
sensitivity is highest during the detrainment period in both hemispheres.

Changing the penetration depth hB for the solar radiation from 10 m to 5 m results in a
general reduction of the MLD too (Figure 10). Solar heating is concentrated more toward
the surface, the buoyancy input is more negative, and the MLD reduced (see equation (1)).
As with ino, the highest sensitivity is during the retreat phase. But here we find maxima at
25°N and 25°S. The large positive change during summer occurs at the coast of
Greenland. It must be attributed to a combined effect of advection and convection. Note
that the MLD is undefined prior to June.

Considering the ?flY term (Figure 11) we also find noticeable changes concentrated in

May. According to the latitudinal distribution of the windstress r we find a decrease in
MLD in the area of the westerlies north of about 301N. Closer to the equator, easterlies
prevail and the MLD becomes deeper.

The sensitivity of the decay functions a and b appears to be quite different The effect of
changing Kcfrom 0.4 to 0.33 is small and concentrated mainly in the northern area (Figure
12). On the other hand changing p from 5 to 2 results in a large decrease of the MLD
outside the equatorial band (Figure 13). Differences are on the order of 20 m during the
time when the MLD is deepest. Of course a reduction in p will diminish the MLD only in
regions with a positive buoyancy flux B, i.e. cooling or evaporation. Outside these areas
there will be no change. The local deepening found at the coast of Greenland during
summer is similar to Figure 10.
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Figure 4. Hovm6ller diagram of measured mixed layer depth at 30*W as a function of latitude and
time. Contour intervals as in Fig. 1. There is a strong seasonal cycle north of 400 N.
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Figure 5. Hovm6ller diagram of modeled muxed layer depth at 30W. Contour intervals as in Fig. 1.
The seasonal cycle is less pronounced compared to measurements (Fig. 4).
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Figure 6. Hovm6l1er diagram of error in mixed layer depth at 30*W. C.i. 25 m. During winter the
model is too shallow in the north and too deep in the south. Detrainment in the spring is delayed.
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Figure 7. Hovmller diagram of the modeled mixed layer temperature at 30°W. Temperature rises
to 280 C at the equator.
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Figure 8. Hovmller diagram of error in mixed layer temperature at 30'W. C.i. = I K. Temperature

differences are small except north of 40ON where they increase. The model is too cold by as much as

4 K near Greenland.

paramter change from m0=-1.2 to mO=0.8
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Figure 9. Hovm6ller diagram of difference in mixed layer depth at 30'W. Parameter mo was

changed from 1.2 to 0.8. C.i. = 5 m. Because of the decrease in the wind input of TKE the MLD

becomes shallower by up to 50 m.
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paramler change: from hB=10 to hB=5
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Figure 10. Hovmller diagram of difference in mixed layer depth at 30*W. Parameter hB was
changed from 10 to 5 m. C.i. = 5 m. Less penetration of solar heating concentrates the input of
negative buoyancy more toward the surface. This stabilizes the mixed layer and decreases its
thickness by 10 m on the average.
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Figure 11. Hovmller diagram of difference in mixed layer depth at 30°W. The term involving
"T.'ay is included in the calculation. C.i. = 5 m. In the region of westerly winds we observe a retreat in

the MLD, whereas easterlies lead to a deepening.
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paramter change: kappa=0.4 to kappa=0.33
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Figure 12. Hovm6ller diagram of difference in mixed layer depth at 30°W. The depth scale K was

changed from 0.4 to 0.33. C.i. = 5 m. Less TKE is available at the bottom of the MLD resulting in a

shallower mixed layer.
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Figure 13. Hovmoller diagram of difference in mixed layer depth at 30°W. The depth scale / was

changed from 5 to 2. C.i. = 5 m. Much stronger damping of the turbulence produced by positive

buoyancy results in a retreat of the MLD. The decrease is restricted to areas of positive buoyancy flux
B.
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d) Inverse solution

The hi calculated above are now used to solve (13) for the optimal vector X. It should be
mentioned first that most of the improvement in the data misfit was made in previous
iterations. The remaining error was predominantly systematic and could only slightly be
reduced. Differences between the optimal solution and the reference solution are small.
They amount to a reduction of the MLD of less than 20 m for most cases (Figure 14).
Only in areas with convection changes are high and local.
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Figure 14. Histogram of the change of the modeled MLD resulting from the optimization of the
parameters. Most changes reduce the MLD by up to 10 m. Positive changes (deepening) are rare.

One of the most important findings is that parameter c, which is the coefficient of the rJY
term, finally turns out to be zero. The corresponding hi (Figure 11) leads to a deepening in
the tropical regions where the model is already too deep. Farther north the reduction in
MLD is of benefit. However, in this area other parameters, such as u or mi, are more
effective and are preferred. The modeled MLD would only be improved with a negative c,
which violates the theory of Garwood et al. (1985ab). Consequently this theory must be
rejected in the context of our modeling effort.

It is worth mentioning that the data misfit (10) is larger for each individual perturbation
than for the control experiment. One could be tempted to believe that no improvement is
possible. However, a combination of small xi leads to a reduction in Jdat. This is evident
from the gradient dJA,, / dx, calculated at the reference solution. It is negative for c and
positive for the other four parameters. Of course the gradient must be zero at the optimized
solution.
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The remaining parameters are found by solving

r4.273 0.264 0.261 0.287' (0.467 (23)0244980.627 0.4192.6
0.261 0.627 4.772 0.382 x 2.189
0.287 0.419 0.382 4.728 1.604j

The x, are positive and less than one as required by (20). The regularization term in (12) has
a strong influence on the solution. Although Jds accounts for 97 % of Jt most of this
error is systematic and cannot be improved much in the final iteration. Most of the
progress has already been made previously. The diagonal elements of matrix A are
dominated by a,2 . They imply that after many iterations we have reached a state where the
solution now depends more on our a priori knowledge and less on data.

Non-dimensional xi are converted to the corresponding parameter difference and the
optimal set of parameters is calculated (Table 1). Values for mo and ir appear to be
reasonable. The closeness of K to the Krmfn constant of 0.4 is striking. However, we
would never propose to determine the KnAn constant via assimilation of measured
mixed layer thickness. A y of 3.5 is reasonable too as it allows less damping of buoyancy
induced turbulence compared to mechanically generated turbulence. Finally a penetration
scale of solar heating hB of 8 m seems to be too small. In clear sea water hB is on the order
of 20 m.327

Error analysis

The optimal MLD h,.o is similar to the first guess ho. A histogram of the remaining error is
shown in Figure 15. The result is still biased with a mean of the error of -7.8 m. Most of
the MLD is overestimated by some tens of meters. A noticeable number of
underestimations by 100 m and more are also found. The rms error after optimization
amounts to 48.7 m. If we now construct a linear model T,,,m for the mixed layer
temperature in analogy to h.,. where the Ti are calculated from the temperature differences
in the perturbation experi.TY'1s and the xi are taken from the optimization of the MLD, we
find only small temperature changes in comparison with the reference solution. Figure 16
shows the histogram of the final temperature errors. The differences to the measured sea
surface temperature are only slightly biased. The mean temperature error amounts to -0.49
K (model too cold) and the rms error is 1.35 K.

The seasonal cycle of the error is shown in Figure 17. The rms error (upper curve) and the
bias (lower curve) are plotted as a function of time. Straight lines depict the annual mean
of the rms (48.7 m) and of the bias (7.8 m). We notice a moderate seasonal cycle in the
data misfit with the smallest values in May. The bias, on the other, hand shows no
systematic time dependence. Errors of the mean are low in March when the MID is deep
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and in August to November when the MLD is shallow. In between the MLD is
overestimated in the mean by as much as 20 m.

Next we study the latitudinal dependence. We find that the error (full line in Figure 18) is
very small at the equator and increases poleward. The maximum of about 120 m rms is
found at 60°N. However, here the number of points that enter the optimization (thin line in
Figure 18) has already dropped considerably down from its maximum at 30°N. The total
misfit Jda is therefore only moderately influenced by the errors at 60°N and farther north.

final eror in MLD
4000

30M0

2000

1000.

100 -50 0 50 100
[Im]

Figure 15: Histogram of the error of the modelled MLD. The distribution of the model error is
strongly skewed. Most model values are too deep. However, there is a strong contribution by the
values which are too shallow by 100 m and more.
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Figure 16. Histogram of the error of the modeled mixed layer temperature. The model is slightly too
cold (0.14 K on average). Most errors are smaller than I K.
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Figure 17. Seasonal cycle of the rms error in MLI and the mean of the misfit. The rms error is
smallest in May, the error in the mean is highest in June. Straight lines depict the annual mean. On
average the modeled MLD is too deep by 6.9 m.
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Figure 18. Rms error of the MID in m (solid line) and number of 20 by 20 grid-cells used in the
optimization (thin line) as a function of latitude. The error is very small at the equator and increases
poleward with maximum values of 180 m at W0 N. The number of points drops sharply north of 30"N
mainly as a result of the indease in undefined MLD.



326 SCHROTER

Large errors in temperature occur in the same areas as large MLD errors, i.e. mainly north
of 60'N. There is, however, no distinct connection between the large errors. We have
recalculated the whole data assimilation retaining only MLD where the temperature error
was below 1 K. Nevertheless, the optimized parameters were practically the same as
before. The xi changed by less than 10%, the total number of points was reduced from
14782 to 10043 and the rms error from 48.7 to 41.3 m.

The improvement in modeling of the MLD can be seen in the differences in the misfit
before and after the data assimilation. Figure 19 shows the probability density function
(pdf) of the remaining error versus the initial error. For practically all negative errors
(model too deep) values are above the 450 line. The improvement amounts to changes
between 5 and 15 m and is higher for large errors.

pdf 1000
50

0-

C

50

-50 0 50
initial MLD error

Figure 19. Frequency distribution of final error in MLD versus initial error. Most errors are negative
(model too deep) with a maximum of probability at about -20 m. The final optimization improves the
errors by 10 m and more.

Finally we calculate the error covariance matrix E according to (18). As the dimensions of
the parameters are different and their variances (Table 1) have a different order of
magnitude we have chosen to show the error correlation matrix (Table 2) instead of E. As
can be deducted from the similarities in the hi all cross-correlations are negative. That is,
overestimation of one parameter is correlated with underestimation of the others. Most
cross-correlations are, however, very small with the exception of the anti-correlation of the
errors in hB and in,.
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Table 2. Correlation matrix
Parameter mO h mIrl It

S1.000 -0.046 -0.046 -0.056
MO -0.046 1.000 -0.131 -0.073

hB [mJ -0.046 -0.131 1.000 -0.073
A -0.056 -0.073 -0.073 1.000

Conclusions

An inverse method has been applied to determine the free parameters of a non linear mixed
layer model. The method is successful in reducing the misfit between modeled and
measured mixed layer depth. Parameters and their error covariance matrix are determined
by data assimilation. The major advantage is an objective test of different competing model
formulations. A number of different damping mechanisms were examined and finally an
exponential decay of turbulent kinetic energy that scales with the Ekman depth is selected.
In the same way we tested the hypothesis of Garwood et al. (1985ab), which introduces a
source of turbulent kinetic energy for easterly and a sink for westerly winds. This theory
was rejected because it did not fit the data.

An error analysis is a necessary step to determine systematic errors which cannot be
removed by parameter optimization. On the contrary, one has to be careful that some of the
parameters are not tuned to alleviate these errors. For instance, in our case the penetration
depth of the solar heating was diminished to reduce a systematic overestimation of the
mixed layer depth. For the same reason the efficiency of wind stirring was underestimated
in comparison to more advanced model versions. We would like to point out that currently
the following set of parameters is advised for OPYC:

mo= 1.2, r= 0.4,
p -"2, Ril = 0.25,
c = d'= 0,
e= 1, Y = 0.42 and
hB = 23 m.
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ABSTRACT

To determine the value of the adjustable parameters of an ocean model that are required to
optimally fit the observations, an adaptive inverse method is developed and applied to a
sea surface temperature (SST) model of the tropical Atlantic. The best-fit calculation is
performed by minimizing the misfit between observed and simulated data, which depends
on the observational and the modelization errors. An adaptive procedure is designed
where the model that is being tuned is also used to construct a sample estimate of the
observational error covariance matrix. Assuming idealized modelization errors, the
procedure is applied to the SST model of Blumenthal and Cane (1989), yielding improved
estimates for several model and heat flux parameters. The tuned model provides a better
simulation of the mean annual SST, but the model's ability to represent the seasonal and
the interannual variability is not improved, and the model-observation discrepancies
remain too large. The existence of larger model deficiencies than was originally assumed in
the model errors is confirmed by a statistical test of the correctness of the assumptions in
the inverse calculation.

1. INTRODUCTION

All oceanic models contain parameterizations of such physical processes as convection and
mixing. Surface forcing also depends on poorly known parameters. Parameterizations are
based on physical ideas, but typically yield forms that contain parameters whose values are
not know, precisely. A parameter is often model dependent (e.g., mixing is a function of
grid spacing), hence parameter tuning may be in part model dependent. In view of their
inherent imprecision, the uncertain parameters should be tuned against observed data. At
the same time, models should be consistent with known physics to within the tolerances
allowed by the approximations made.

Particularly in the tropics where observations are sparse, both forcing and verification data
are imprecisely known. Hence, the accuracy to be expected in model simulations is limited,
even if the physics are perfectly represented, and data uncertainties should be taken into
account in parameter tuning. Frankignoul et al. (1989) have developed a multivariate
model testing procedure that provides an objective measure of the fit between ocean
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model simulations and observations, taking into account the data uncertainties. By using a
trial and error approach, the method can be used for model tuning (Duchene and
Frankignoul, 1991; Braconnot and Frankignoul, 1993). However, this requires that the
number of adjustable parameters is small.

A more efficient tuning approach is that of Blumenthal and Cane (1989), who used inverse
modeling procedures to determine the parameter values required to optimally fit sea
surface temperature (SST) in a simplified tropical SST model. A priori knowledge
constraining the parameter range was included in the calculation, but only a highly
idealized model was used for the data errors. The error model enters the measure of the
misfit between observed and predicted data which is minimized in the best-fit calculation.
Thus, the atmospheric forcing uncertainties need to be properly represented, as they
introduce large uncertainties in the model response.

As the forcing uncertainties have large and poorly known correlation scales, the error
estimates are best derived from direct simulations. We have thus developed an adaptive
tuning procedure, where the model that is being tuned is also used to construct the
observational error model for the best-fit calculation. The tuned model is then tested
against observations, and if it agrees with the data to within expected errors, it will be
judged adequate. Such an adaptive technique combines the model tuning of Blumenthal
and Cane (1989) and the model testing of Frankignoul et al. (1989). Although the
procedure is developed in the context of a simplified tropical sea surface temperature
model, it is general as long as the parameter dependence is linear. The adaptive procedure
requires little computation and programming, and is much simpler to implement than the
adjoint method. However, since the effective degrees of freedom of the error estimates is
limited Hy the length of the sample, the number of parameters that can be tuned is limited.

The emphasis here is on the adaptive inverse procedure, although it is introduced in the
context of a tropical SST model. An in-depth discussion of the results is given in Scoffier
et al. (1993).

2. MODELING SEA SURFACE TEMPERATURE VARIATIONS

a. Ocean model and surface heat flux

The ocean model is that of Blumenthal and Cane (1989, hereafter BC). The velocity is
predicted with a linear, multimode equatorial beta-plane model with a surface mixed layer
of constant depth h= 35 m, which adds a direct Ekman flow to the modal currents. The
model has five vertical modes, which are characteristic of mean tropical Atlantic
conditions and have gravity wave speed of 2.36, 1.38, 0.89, 0.69 and 0.53 m/s,
respectively. The model basin extends from 30'N to 20*S and has a simplified geometry;
its resolution is 1° in longitude and 0.50 in latitude and the time step is one week. The
equations are solved in the longwave approximation, so that the model is only appropriate
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away from the western boundary. In the following, we only consider the domain in Figure
1, which should not be affected by the model artificial boundaries.

The SST is uniform in the mixed layer and determined from the net balance of horizontal
advection, upwelling, horizontal diffusion, and surface heat exchanges:

d,T+udT+vdT+ yw(T-Td) = i,(od + d,)T.+ Q
h pCh

where w is the vertical velocity at the mixed layer base in case of entrainment and zero
otherwise, ic a horizontal diffusion coefficient and Q the surface heat flux into the mixed
layer, and Td the temperature below the mixed layer which is parametrized as a function of
the thermocline depth. As in BC, the parameterization of Td is done in two parts: First the
temperature at the mixed layer base is fit to the depth of the 20°C isotherm in the
equatorial zone using observations, then the 20TC isotherm depth is fit to the model
prediction of the thermocline depth. The upwelling term is usually written as w(T -T,),

where T7 is the temperature of the water entrained into the mixed layer, but the two forms
are equivalent if

T, = (1- y)T+ yTd (2)

where the "entrainment efficiency" 7 is an adjustable parameter that should be less than
one, because T, is between T and Td

The surface heat flux parameterization is that of Seager et al. (1988, henceforth SZC),
which was designed to avoid using either the (poorly measured) air-sea temperature
differences found in the bulk formulae or the artificial feedback to a prescribed
climatological air temperature often imposed in ocean simulations. This parameterization
only makes use of wind speed Va and fractional cloud cover C as measured variables:

Q = 0. 94 Q0 (1- acc + ao) -pCE L v~aqh q, (T)- a,,(T -T,,). (3)

The first term is the (usual) short wave radiation, where Q0 is the clear sky solar flux
reduced by the effects of a constant surface albedo and by the absorption and reflection of
the atmosphere, which depends on C and solar angle a. The second term represents the
latent heat flux, which is computed from the standard bulk formula using a fixed
percentage ah of the saturation humidity q%(7) as evaporation potential; this assumes that
the moisture content of the air has equilibrated with the ocean temperature, which is a
reasonable assumption sufficiently far from the coasts. To compensate for the loss of
variability in using monthly winds, v* is not allowed to fall below 4 m/s. The smaller
sensible heat flux and back radiation are simply modeled together in the last term as being
proportional to T minus a constant reference temperature T,.
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In the SST equation and the heat flux formulation, there are a number of parameters that
are not precisely known, but were assigned a "reasonable" value by SZC. Here we
assume that seven parameters are adjustable within reasonable ranges: the entrainment
efficiency y, the horizontal diffusion K, and the heat flux parameters a ,a.,ah,ar, and arTr
in (3), which we represent below by the seven-dimensional vector a. The a priori values
of the tunable parameters, denoted by ap, are those of SZC, namely y = 0.5, x = 2 x 101
m2 s-1, a, = 0.62, a,= 0.0019, arh = 0.3, at = 1.5 W M- 2 K-1 and Tr= 273.15 K. The drag
coefficient for the wind stress is not allowed to vary because its uncertainty is simulated
explicitly.

b. Simulation of the tropical Atlantic SST climatology

After spin-up, the model is forced by a monthly wind stress derived from ship reports for
the period 1964-1986 and described in Frankignoal et al. (1989, henceforth FDC). To
simulate the drag coefficient uncertainty, we follow the Monte Carlo approach of
Braconnot and Frankignoul (1993) and use five different, equally plausible drag
coefficients in the bulk formula. They are calculated by prescribing a relative humidity of
80% and using either a constant air-sea temperature difference of-1IC (for the
parameterization of Cardone (unpublished manuscript)), or a climatological monthly air-
sea temperature difference derived from the COADS data (for the parameterizations of
Liu et al. (1979), Large and Pond (1981), Isemer and Hasse (1987), and Smith (1988)).
To avoid smoothing, the monthly mean wind stresses were corrected to insure that linear
interpolation on the model time step would not alter the original means. Cloudiness data
are of poorer quality, so that cloud cover is prescribed from the monthly climatology of
Esbensen and Kushnir (1981), with an added normal noise of 0.1 standard deviation to
crudely simulate its short space-time scale variability.

Ignoring the first year to eliminate the effects of the unknown initial conditions, we have
five 22-year simulations of the SST whose dispersion is representative of both the
interannual variability and the drag coefficient uncertainty. The mean cycle of simulated
SST is warmer than the observations, as illustrated in Figure 1 for January, April, July, and
October by a comparison with the mean SST over the same period calculated from the
data of Servain et al. (1985).

The differences between the SST predictions and the observations are due to (a) errors in
the atmospheric forcing (wind stress, cloud) and the SST observations, (b) model
shortcomings due to over-simplification of the physics, or (c) poor choice of the model
parameters. To assess the validity of the SST model, we must take (a) into account and
minimize (c) by an optimal tuning. Remaining discrepancies should then point to the model
deficiencies (b).
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SEA SURFACE TEMPERATURE (in *C)
Simulations Observations Differences
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Figure 1. (left) Mean SST in °C during January, April, July and October for the period 1965-1986 as
predicted using the a priori values of the model parameters. (center) Corresponding SST as derived from
the observations by Servain et al. (1985). (right) Differences between simulations and observations.

Root-mean-square (rms) SST differences between model and observations on the 20 x 20
grid of the latter are given in Table I (left column), where we distinguish between annual
mean, mean seasonal variations around the annual mean (hereafter the mean seasonal
variability), and SST anomalies. The model-observation differences are large, particularly
for the long term mean which is strongly affected by a 3.90 C mean bias.

A more quantitative estimation of the model performances taking into account some of the
uncertainties in the oceanic observations and the atmospheric forcing, as well as their
space-time correlations, has been made for the mean seasonal cycle obtained with
Cardone's drag coefficient. Following the multivariate approach of FDC, we calculate the
misfit

81 ------- (T AIL T)'- T -T(4)
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where T and to describe the mean seasonal cycle of modeled and observed SST,
respectively, the vector space including all grid points (on the observational grid) and the
twelve months. The overbar denotes the 22-year mean, the prime denotes the vector
transpose, and D is the error covariance matrix of (T - To)). In the calculation reported
here, D is estimated from the five 22-year samples, assuming for simplicity that each year
is statistically independent. It takes into account the uncertainties in the mean seasonal
variations that are due to interannual variability, non-systematic observational errors of
SST, wind, and cloud cover. Not represented in D are systematic observational errors
(e.g., incorrect Beaufort scale), drag coefficient uncertainty, lack of high frequency
variability, and limited resolution of the wind stress curl. As the dimension of the SST field
is much larger than the degrees of freedom of D, the misfit (4) is calculated in a truncated
space which is sufficiently small to calculate D reliably while representing the main space-
time patterns of (T - T0).

Table 1: Rms difference in TC between observed and
modeled SST before and after tuning in the 20°N-10°S
region. The correlation between observed and simulated
monthly anomalies during 1965-86 is given in italic.

(SSTmd-SSTobs) before tuning after tuning

annual mean 4.0 1.9
seasonal variability 0.7 0.8
anomaly correlation 0.13 0.10

If the SST fields are multinormal, the null hypothesis that the model response to the true
forcing is equal to the true SST can be tested because the test statistic (4) is then
Hotelling's T2 statistic. As shown in Table 2, T2 is much larger than the critical value at
the 5% level, especially for the yearly mean difference. Although only part of the
observational errors have been considered in the test, the data uncertainties are clearly
insufficient to explain all the model-observation discrepancies, which must be mainly
attributed to model shortcomings and poor parameter tuning.
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Table 2: Misfit between model and observations in the
200N-10°S region, before and after tuning. The critical
values for rejecting the null hypothesis of no modelization
error are given for the 5% level (right).

Misfit before after critical
tuning tuning value

annual mean 906 277 4

seasonal variability 2012 1694 73

3. AN ADAPTIVE PROCEDURE FOR MODEL TUNING

a. Linear model corrections

To see how the tunable parameters enter the SST calculation, it is convenient to write
equation (1) in matrix form

L(T)+ M(T)ap = 0 (5)

where the vector T represents temperature at all the points in space and time where a
model solution has been obtained, ap = (y, ,aK,aa,,ah,ar,arT,) is the vector of a priori

parameter values, M(T) and L(T) are linear operators determined at all space/time points
by retaining the terms of the model equations (1) and (3) that are and are not affected by
parameter changes, respectively. Specifically, the ith row of L(T) includes the contribution
at space/time point i from

doT + ud.,T + vd, T-0.94Qo,

while the ith row of M(T) correspondingly represents the transpose of the terms

w(T-Td)lh

-+ (dyy

0.94QOC

-0.94Q0a
-pELvaq., (T)

T

-1
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Both L and M depend on the atmospheric forcing, which is imperfectly known, so that
even if the model was perfect and the uncertain parameters optimally chosen, the model
predictions would differ from the observations.

Because SST is a relatively well-measured variable, we follow BC and estimate the
"corrective heat flux" 8q that, for the a priori values of the uncertain model parameters,
would be necessary to make the model SST match the observed SST exactly. To do so,
we run the model using the observed SST, denoted by To, instead of the calculated one,
after interpolation on the model grid. Equation (5) is then only satisfied by adding a "heat
flux correction" 8q:

"L(TO) + M(To) ap + 8q = 0 (6)

As expected from the limited SST agreement, the heat flux correction Sq is rather large,
and additional cooling would be needed for realistic simulations (Fig.2a).

Because 8q depends linearly on the tunable model parameters, the estimation of their
optimal value can be formulated as the linear inverse problem

8q = M(To) 8a, (7)

where 8a=(&y, 8K,..., 8 aTTr) represent the parameters changes that minimize the heat flux
correction 8q , yielding

(8q)min = 8q - M(To) 8a, (8)

A good estimator of 8a must take errors into account, as well as our knowledge of the
expected parameter range.

There are many sources of errors in the estimates appearing in (7). The wind stress and the
cloud data used to force the model have significant errors, resulting in model response
uncertainties with large correlation scales, particularly in the equatorial waveguide. The
observed SST is noisy as well, although to a lesser extent. When the best-fit calculation is
based on a mean seasonal cycle as in this paper, there are also sampling errors which
reflect the interannual variability and have large correlation scales. Finally, there are
"irreducible" modelization errors inherent in the ocean model formulation, e.g., errors due
to subgridscale phenomena or to the oversimplification of the ocean dynamics and the air-
sea fluxes, which cannot be expected to be reduced by model tuning,. The modelization
errors (called system errors in the Kalman filter literature) thus represent the errors that
would exist if there were no observational errors and the uncertain parameters were at
their true value.

Using a Bayesian viewpoint, Tarantola (1987) discusses the general inverse problem in the
case of an inaccurate theory. When the forward problem is linear as in (7) and there are
Gaussian modelization errors in M, described by the covariance CT, the solution of the
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inverse problem takes a simple form if the observational errors in Sq are Gaussian and
statistically independent from the modelization errors. If the a priori value of the
parameter correction Sa is zero, as in the present case, the optimal solution is given by the
minimum of the misfit function

S(Sa) = [(MSa - 8q)' C-1 (MSa - Sq) + 8a' Ca"1 Sal / 2 (9)

with C = CT + Cd, where Cd is the error covariance matrix of the observations Sq, and
the covariance matrix C. describes the a priori uncertainty of Sa. The solution is

Sa = (M' C-' M + Ca-I)- 1 M' C-' Sq. (10)

BC followed this formalism, assuming for simplicity that the observational noise only
affected the model matrix M, and the modelization error only the heat flux correction Sq.
On the basis of order of magnitude estimates, they used a constant rms error of 35 W/m 2

(10 W/m2) with a simple exponential decay for the total (modelization) errors. There are a
number of simplifications in this approach. As shown by (6), both Sq and M depend on
the input data (e.g., the surface wind stress affects both the heat exchanges and the ocean
dynamics), hence they are both affected by data uncertainties and modelization errors. The
errors in 8q and M are thus not statistically independent, and the model matrix really is a
stochastic regression matrix. Unfortunately, ordinary and generalized least squares
estimators are in general not consistent in this case of nonlinear coupling between model
and data errors. The error models used by BC are also highly idealized. Since the results
of the tuning are sensitive to the assumed error models, we adopt a more elaborate
strategy to achieve a refined estimate.

b. The adaptive procedure

The correlation scales of the model response errors due to forcing and SST uncertainties
are large and complex, hence difficult to represent a priori. However, they can be
estimated by using the different wind stress products and the long SST time series of
section 2b, since many plausible realizations of the model seasonal response are available.
We thus perform the optimization on the mean seasonal cycle, which is least noisy, and
use the dispersion of the model seasonal responses as independent information to
construct a more realistic model for the observational errors.

Assuming that the parameters do not vary in time, we can write for each year t (here I = 1,
22) and for each forcing i (here i = 1, 5), denoted by the upper index, that the linear model
(7) holds:

Lt, i(Tot ) + M', i(Tot ) ap + Sq1,i = 0. (11)
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Denoting long-term sample means by an overbar and the mean over the different forcing
by an angle brace, we write relation (6) under the form

< L(T0 ) > + < M(To ) > a,+ < 8 >= 0. (12)

The errors in (11) and (12) are due to forcing and SST uncertainties, and to model
inadequacies.

Let us write the parameter estimation as the linear statistical model

< >=< M>80+< > (13)

where < e > represents the errors, which are assumed to be Gaussian, with zero mean and

unknown true covariance matrix C. Because of the statistical dependence between < 8 >

and < M >, an estimate of 8a is required before one may estimate the random errors from
the sample. Thus, an adaptive approach is used, where the estimates of the observational
error covariance and the model parameters are updated as part of an iterative procedure. If
we have a first estimate of 8a, say Sao, which we will take equal to zero, then we can
estimate for each year I the mean error over the different forcing, <e/t >, by

<ell>= <8q1>- <Mt> 8*o. (14)

A first sample estimate of the error covariance matrix associated with the random wind,
cloud and SST errors is

1 22
Srl 21x- 2 ,-1(< e, >- < il >)(< e' > -<•e ) (15)

where we have assumed for simplicity that observations are independent at yearly
intervals. We can also estimate for each forcing i the long-term mean error, iý i, by

- 1. - 1. -

el =6j-M & (16)

and a first sample estimate of the error covariance matrix associated with the drag
coefficient uncertainties is

Sfn = 4xY,•(i- <'j, >)(< e, >-< i >)" 17

4x5 .,

A first sample estimate of the error covariance associated with the observational
uncertainties, say S,,,, can then be obtained by

Sdl = Sri + Sn

and it can be used to compute an estimated generalized least squares estimate of 8a, say
Sal. As in (10), we incorporate the modelization errors and our a priori knowledge on the
model parameters,
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•1 = S(M' ••M+) -)iS i (18)
with

St = Sdi + CT (19)

The procedure is repeated by using 8a, in (14) to get an improved estimate S., leading to
the parameter correction U.2, and so on. If 8a represents a reasonable first guess and if
the inverses in (18) are well-conditioned, the procedure should converge rapidly. The end
result is a data error structure consistent with the results of the multi-year model run, and
thus presumably a better parameter estimation.

The error model S. represents most of the nonsystematic data and model errors; it also
includes such data errors as artificial trends in wind and SST data. The true interannual
variability is not treated as an error since it appears in both 8lt and M1 in (14). The
weighting in the least squares fit is therefore based on data noise and uncertainties and it
takes into account, at least approximately, the lack of independence between M and Sq.
On the other hand, the weighting is not affected by the systematic errors that recur every
year; model deficiencies, or systematic data biases, must be dealt with explicitly.

Because of the limited sample, the error covariance matrix S.. is of strongly reduced rank
and the inverse of S. dominated by unreliable information. Hence, the problem is ill-
conditioned. To circumvent the difficulty, we strongly reduce the dimension of the fields
and tune the model in the highly truncated space. The iterative method is implemented in
reduced space: for each forcing, each individual year is projected onto the reduced base,
thereby defining a reduced heat flux correction and a reduced model matrix. By
projection, a reduced modelization error matrix is also constructed. The sample error
covariance matrix associated with the observational uncertainties and the optimal
parameter corrections are then directly calculated in reduced space, so that the
computational costs are very limited.

c. Model testing

The correctness of the SST model and the main assumptions in the inverse calculation
(e.g., modelization and data errors) can be checked by looking at the residuals after
optimization, but this ignores useful information on correlation scales. To take the
multidimensional aspects of the fields into account, we generalize a multivariate test
derived by Tarantola (1987) and consider the minimum of the misfit function (9), given by

2S (3a*)= ýq(MC, MW +S3 )-1 8-q (20)
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with S. = Sb + CT. The null hypothesis that the only errors besides the observational ones
are the modelization errors can be tested since the test statistic (20) is distributed as
Hotelling's T2 with degrees of freedom q (the reduced dimension) and T (the equivalent
degrees of freedom of S.). If (20) exceeds the critical value at a given level of confidence,
then some of the assumptions are unlikely to be acceptable. Since, except for possible
biases, the observational uncertainties are represented by an error model which is, by
construction, consistent with the available observations, the most likely interpretation is
that the model is not as accurate as it has been assumed, i.e., the modelization errors have
been underestimated.

4. TUNING THE TROPICAL ATLANTIC SST MODEL

The monthly values of qi, i and Mtsi are first spatially smoothed with a 50 x 50 running
average. The fit is then done in the region between 10°S and 201N, by considering
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Figure 2a. (left) Mean heat flux correction in Wm"2 during January, April, July and October for the period
1965-1986, when using the a priori values of the model parameters. Corresponding values of (center) the
upwelling flux and (right) horizontal diffusion.
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January, April, July, and October, which are representative of the various SST regimes.
The data dimension p is 3 22 x 4 = 1288.

The mean heat flux correction < Si> is represented in Figure 2a. The rms value is large
(69 Wm-2), and negative values in excess of -100 Wnr2 are found off Africa and in the
Gulf of Guinea, mostly where the largest SST differences are observed. The tuning can be
viewed as determining the best fit of the heat flux correction vector in Figure 2a by the
seven column vectors of < M(T1) >, which are represented in Figures 2a~b (units are
arbitrary). The upwelling pattern (Fig. 2a, center) has a large signal in the Gulf of Guinea
with maximum amplitude during the upweliing season in July; a smaller signal is seen in
the ITCZ with maximum amplitude off Africa, except in April. The meridional scaled of
the diffusion pattern (Fig. 2a, right) is slightly smaller than that of upwelling. The cloud
pattern cloud pattern (Fig. 2b, left) has broader scales and its seasonal changes reflect
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those of Q0 and C. The evaporation pattern (Fig. 2b, right) has a large meridional scale
and strong zonal gradients. Additional patterns are the insolation pattern in Figure 2b
(right), a constant, and the observed SST pattern shown in Figure 1.

The data compression is done by working in the space defined by orthonormalizing the
eight vectors consisting of < Si > and the seven column vectors of < M >. As the
dimension q1 of the subspace is the number of adjustable parameters plus one, the inverse
problem remains formally overdetermined. As described in section 3, 8ql, i and Mt, i are
projected onto the reduced base for each year t, and the sample error covariance matrix
directly estimated in reduced space at each iteration n. Because S. has limited degrees of
freedom, its elements are inaccurately known (large sampling errors) and the condition
number of the matrix S. is very large. Lacking precise information on the modelization
errors, we use BC's model, but double the rms error to 20 Wm"2. This modelization error
matrix is not sufficient to insure good conditioning, so a singular value decomposition is
used to invert S. in (18). In practice, we apply a taper which is an estimate of the accur,,y
of the elements of St,.

For simplicity, we use zero for the parameter correction 8ao, but the results are similar
when using a different initial value. Convergence is reached in two or three iterations, with
the largest changes occuring after the first iteration. Figure 3 shows the a priori and a
posteriori values of the adjustable parameters with twice their standard deviation (an
approximation to the 95% confidence interval). Of the seven adjustable parameters, two
strongly decrease to values that are positive, but not significantly different from zero at the
5% level: the upwelling efficiency y and the horizontal diffusion K. Both parameters are
well-resolved by the data set and independently resolved. However, such a small value for
the upwelling efficiency is unlikely from a physical point of view. Although the changes in
the cloud factor a, and the latent heat flux arh are also well-resolved, they are not
statistically significant at the 5% level, which suggests that the a priori choices were good,
needing only little adjustment. However, the two parameters are not independently
resolved and are anticorrelated, and correlated with the three remaining parameters, aa, aT
and aT T1, which are poorly resolved by the data set.

Figure 4 shows the heat flux correction (8) after tuning. The amplitudes are smaller than in
Figure 2: the rms value has dropped to 32 Wm-2 and the space-time average to -7 Wm-2 ,
suggesting that the warm SST bias in Figure 1 should be mostly corrected. However, heat
flux corrections larger than 100 Wm"2 can still be seen off the North African coast during
winter and in the equatorial upwelling region during summer. These are too large to be
explainable by the data uncertainties and are associated with model deficiencies, as
discussed by BC and Scoffier et al. (1993).
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To verify the consistency of the inverse
calculation, we apply the test of section 3c.
Although the critical value of the test
statistic (20) is difficult to establish as the
total error covariance is the sum of a
sample one and an (assumed to be) true
one, upper and lower bounds can easily be
found. For true covariances, the critical

0.0 0.2 0.4 0.6 value, given by the ) 2 distribution with 8
Upwelling efficiency degrees of freedom (the dimension of the

space), would be 16 at the 5% level (lower
bound). For sample covariance matrices, it

, I o , would be given by Hotelling's T 2 and equal

0.0000 0.0010 0.0020 0.0030 to 32 (upper bound). The test is 385,
Solar angle dependence which largely exceeds the latter value. This

confirms that the modelization errors have
been strongly underestimated. In

,c o ,particular, there are large modelization
I Il I I I I I i i i0.30 0.45 0.60 0.75 0.90 biases, not only random modelization
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Figure 4.(left) Mean heat flux correction in Wm"2 during January, April, July and October for the period
1965-1986, after optimization; (center) Corresponding SST predictions; (right) Differences between
simulated and observed SST.

Because the tuning minimizes the heat flux correction (more precisely a weighted form of
it), it is of interest to verify whether the SST predictions have been improved by the
parameter changes. The tuned model was thus run with the same forcing fields as before.
As expected, a more realistic SST field is obtained (Fig. 4, center), although model-
observation differences of a few degrees can still be seen in the upwelling region off Africa
during the first part of the year and in the Gulf of Guinea during the second part (Fig. 4,
right). Tables 1 and 2 suggest that the model improvements are limited to a decreast of
the warm SST bias, although it still averages to 1.5°C. The mean seasonal variability and
the observed SST anomalies are not significantly improved, so that the SST model remains
largely inconsistent with the observations: the tuning is unable to compensate the model
shortcomings.

The method is not very sensitive to the details in the calculation. The largest parameter
corrections were obtained when working with low-passed seasonal data, because filtering
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decreases the magnitude of the observational and modelization errors, thereby giving more
weight to the observations in the best-fit calculation. Unfortunately, the increased
resolution by the data set leads to vanishing upwelling efficiency, which is not acceptable.
Although a larger upwelling efficiency could be obtained by constraining more y, this
stresses the inadequacy of the upwelling representation for the tropical Atlantic.

5. CONCLUSIONS

We have developed an adaptive inverse method to tune the adjustable parameters of a
tropical SST model in a way that optimally takes into account the large uncertainties of
the atmospheric forcing anJ the oceanic data, the expected modelization errors and our
a priori knowledge of the parameter values. This is achieved by performing the model
optimization for the mean seasonal SST cycle and using the dispersion of the model
responses for each year and (equally plausible) forcing field as independent information to
construct a sample estimate of the observational error covariance matrix. The procedure is
more refined than that of BC in that the nonlinear nature of the inverse problem is taken
into account and the large correlation scales of the forcing uncertainties are represented
realistically. The method is general as long as the parameters enter the SST equation
linearly, and it can be extended to the nonlinear case by using an iterative approach. Since
the optimization is performed in a strongly reduced space, the computational cost is
limited. However, the estimation of the observational errors requires that several multi-
year model runs be available.

The method has been applied to tuning BC's SST model of the tropical Atlantic. The
optimization reduces the warm SST bias of the model, but brings no significant
improvement in its ability at representing the seasonal or interannual SST fluctuations. A
statistical test of the correctnecs of the assumptions in the inverse calculation shows that
the modelization errors are much larger than assumed. The model flaws are discussed in
Scoffier et al. (1993), who show that the model's inability to properly represent SST
cooling by upwelling is linked to the parameterization of Td in (1) and, as seen in Figure 2a
(center), may result in SST heating by upwelling when the SST is low and the thermocline
deep, which is not realistic.

Finally, it should be noted that the adaptive tuning procedure provides an alternative to
imposing the "correction flux" that is often needed to avoid climate drift when coupling an
SST model to an atmospheric model. Indeed, the decrease in mean SST bias should
decrease climate drift in the coupled mode without introducing the drawbacks of the
correction flux method, because the correction more properly takes place via model
parameters, without altering the SST dynamics.
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NEW DEVELOPMENTS IN STIRRING AND CHAOS:
POSSIBLE ROLE IN OCEAN SCIENCES

Julio M. Ottino
R. R. McCormick School of Engineering and Applied Science, Northwestern University
Evanston, Illinois 60208-3120

1. Introduction and Setting

Getting asked to comment outside one's area is both flattering and healthy. However, the
intersection between what one might know and what people might like to hear--especially
when one cannot accurately gauge the needs of an audience technically far-removed from
one's own-might, in fact, be remarkably small. In spite of having heard much about
oceanography during the 'Aha Huliko'a Hawaii workshop held in January 1993, such still
might be my predicament in this particular case. My role here is to present a view of
mixing and chaos theory and indicate what relevance it might have in problems of interest
in oceanography. My assumption is that the reader is at least vaguely familiar with some
aspects of dynamical chaos.

It probably has not escaped anybody's attention that during the past few years there has
been considerable interest in chaos. The theoretical foundations of the subject are on firm
footing and demonstrations of chaos have been firmly established by analytical,
computational, and experimental means. So much has been the bulk of the work generated
that hardly a month goes by without a book being published and at the last count there were
at least half a dozen journals largely devoted to the topic. The collective impact of the body
of work so generated, with no apparent signs of slowing down, can be compared to the
emergence of a new paradigm. Regrettably, as in any emerging area, sometimes to the
chagrin of its creators, there is some degree of overshoot and less than guaranteed
unbounded enthusiasm. Not everything that claims to be useful is likely going to pass the
test of time, but it is also doubtful that no permanent mark will be left. Undoubtedly, the
way that people will be educated will change (in fact, it is already changing; college physics
textbooks now have sections devoted to chaos). A non-trivial consequence of this trend is
that data that could have been discarded a decade or so ago as being unanalyzable will be
scrutinized in the future in more detail for trends and patterns.

The most intuitively understandable definition of chaos is magnification of small errors and
the impossibility of making predictions for long times. This statement-so often
repeated-has produced the impression that chaotic systems cannot be predicted at all.
Strictly speaking this is far from being true. What cannot be predicted is the detailed
evolution of a specific initial condition. The behavior of the system at large-that of a
multitude of initial conditions-may be quite robust, and this is, in fact, what matters in
many situations of practical interest. As we shall see, a particularly important example is
provided by mixing of fluids.

351
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Claims for applications of chaos theory abound. In fact, in the context of dynamical
systems, the absence of chaos seems to be the exception rather than the rule. The
applications, however, have been largely a posteriori; that is, explaining existing (complex)
behavior and demonstrating that the complexity stems from an underlying deterministic
cause. Much less has been done on the predictive side; using theory to predict the state of
systems for long times. It is apparent that there might be a need for both types of works in
the context of oceanography: interpretation of seagoing data being in the first class,
prediction based on available information being the second. An alternative breakdown
might divide the tasks between analysis of observational data on one side and analysis of
output from numerical models, such as general circulation models, on the other.

The objective of this article is to provide a brief overview of some of our past work on
mixing and chaotic advection including a few remarks not made before. However, in order
to accomplish this objective and setting things in perspective, a number of remarks
pertaining to general aspects of chaos theory will be made. As there are a large number of
references for this material, no review is attempted. The second part of the presentation
involves issues in chaotic advection. One general reference on this topic is availabl'
(Ottino, 1989a) and an introductory review to chaotic mixing is given in Ottino (1959b).
Several other reviews are available (Aref, 1991; the entire issue of Physics of Fluids A, 3,
May 1991, is entirely devoted to stirring and mixing).

2. Dynamical Chaos: Brief Review of Essential Concepts

During the past few years there has been a realization that nonlinear dynamical systems are
able to display a variety of what superficially might be regarded as two contradictory-but,
in fact, perfectly coexisting--behaviors. On one hand the output can be order (e.g.
solitons), on the other it can be chaos (See Fig. 1). Often a system exhibits both behaviors
simultaneously.
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Figure 1. Overview of dynamical systems and definitions of chaos.
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In the context of our discussion dynamical systems are given by sets of ordinary
differential equations (ODEs) or maps

dx-dx = f(xp), x+ 1 = g(x,, A()
dt

where x=(Xl ... ,Xk) with k;l. In order for the system to be chaotic k;3 for ODEs, ki.l for
maps. The components of the vector x might have either a transparent physical meaning or
not according to the problem in question. For example, in chaotic advection x denotes the
actual physical space but in problems where the set of ODEs is arrived at through
truncation, as in the case of Lorenz's equations, the variables have a less transparent one.
The space spanned by x is called the phase space of the system and p, or a set of p's, are
parameters such as the Rayleigh number or Reynolds number. In the case of systems
described by partial differential equations (PDEs) the number of degrees of freedom is
infinite and therefore the phase space is infinite as well. According to the form of f(x),
more precisely the sign of V . f(x), we can speak of two kinds of systems. In one class

there is volume contraction in phase space (V f(x)<O); these are dissipative systems. The

other kind of systems are those that conserve volume in phase space (V. f(x)=O), and of
those the most important sub-class is given by the so-called Hamiltonian systems [a
system can be volume preserving and not be Hamiltonian; however, if it is Hamiltonian it
is volume preserving]. The prototypical example of a dissipative system is the forced
pendulum with friction; the prototypical Hamiltonian system is a forced pendulum without
friction. The bulk of the presentation here will be restricted to volume preserving systems.
However, in order to place the topic in perspective a few remarks pertaining to dissipative
systems might be in order (for mathematical presentations of dynamical systems see
Guckenheimer and Holmes, 1I .' and Wiggins, 1991; for a collection of classical papers
the reader can consult Hao, 1984; an accessible introduction to chaos in both dissipative
and non-dissipative systems is given by Doherty and Ottino, 1988).

Dissipative systems are typically associated with one dimensional maps (such as the
logistic equation, volume contracting systems of ordinary differential equations-such as
in the Lorenz equations-and strange attractors characterized by fractal dimensions. If the
model is continuous, a dissipative system must consist of at least three (autonomous)
ordinary differential equations in order to exhibit chaos (as in the Lorenz model). On the
other hand, if the model is represented by a mapping xn+l= g(xn, p), it can display chaos in
one dimension, i.e. with xn being real (as in the logistic equation). By contrast, a volume
preserving mapping must be at least two-dimensional to be chaotic. As opposed to
dissipative systems, Hamiltonian systems have no stable steady states, the phase space
does not contract, and there are no attractors, strange or otherwise. Dissipative and
Hamiltonian systems have their own ways of "going chaotic." However, both types of
s&ystems have a few things in common. One of the connections is a stretching-and-folding
mechanism in phase space; this is what might be regarded as the basic mechanism leading
to amplification of errors in chaotic systems.
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The closest applications related to oceanography are probably those in meteorology (for
reviews see Tsonis and Elsmer, 1989; Yang, 1991; Zeng at al., 1993), a well-known
application being the model of El Nifio-Southern Oscillation system (Vallis, 1986).
Literature in this area appears voluminous when compared with oceanographic
applications. When averaged across all fields probably over 95% of the current
applications of chaos involve dissipative systems. In meteorology the ratio is close to
100%.

The first question that should be asked when facing a complex system or signal is to
determine if it is stochastic or chaotic (Sigeti and Horsthemke, 1987). If the process is
indeed chaotic, the next task is to determine whether or not it possesses a strange attractor,
the hope being that no matter how large the original system might be, the dynamics might
be captured by the motion in a subspace of much smaller dimension (Fig. 2). These
reconstruction techniques can be based on the measurement of one or more components of
the vector x (Packard et al., 1980; Wolf et al., 1985). Subsequently, the "amount of chaos"
in the projection of the attractor can be characterized by determining its dimensions, by
measuring one or more Lyapunov exponents, and so forth (for a practical application of
these ideas, see Parker and Chua, 1989). Naturally, there are instances when the analysis
starts with the equations themselves (for example the Navier-Stokes equations in a
problem in fluid mechanics). However, in many cases the equations are unmanageable
and they have to be transformed in a way that is suitable for analysis. This is where the
issue of representing a PDE in terms of finite degrees of freedom appears. The most
famous example belonging to this class is the reduction of the Rayleigh-B6nard flow
problem to the Lorenz equations (Lorenz, 1962). A question in this case is whether the
chaos that is seen in the 3x3 truncated system would actually appear in the full problem or
not. This issue was studied by, among others, Wiin-Nielson (1992). The answer, not
surprisingly, is that, yes, the details of the process might depend heavily on the number of
equations considered and that extreme care should be exercised in extrapolating
conclusions outside the range of applicability of the equations.
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Figure 2. Typical modes of analyses of chaotic systems.

In the viewpoint advocated here truncation is not an issue. The viewpoint adopted is a
purely kinematical one which is only suited to the analysis of fluid mechanical issues.
However, to the extent that oceanography is routinely faced with such issues, this does not
seem to be a terribly important drawback. The dynamical system is the velocity field itself.
An important fringe benefit of this approach is the rather transparent connection between
the underlying mathematics and their associated physical meaning.

3. Chaotic Advection: Kinematics

The study of mixing begins with the analysis of the motion due to an imposed velocity
field; i.e., the study of the dynamical system

dx= v(x,t) (2)
dt

where v(x,t) is usually obtained by solution of the Navier-Stokes equations and is volume
preserving (i.e., V v=0). The solution of (2) with the initial condition that x=X at t=0:

x(t) = 0(Xt) such that X = O(X,0) (3)

This solution is called theflow or motion. Although traditional, and probably by now
unchangeable, it should be noted that Eqns. (2-3) represent an abuse of notation. The
variable x has two meanings that can be inferred according to context. In the first one, as in
the right hand side of (2), x represents a fixed position in space; in the second one, as in the
left hand side of (3), x represents the position of particle X at time t. Note also that it is
common to refer to a specific fluid particle as "particle X," when in fact we mean thefluid
particle that was initially located at position X. Equations written in terms of X are
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referred to as Lagrangian; equations written in terms of x are referred to as Eulerian. These
two viewpoints are classical in fluid mechanics. The key idea in chaotic advection is that
whereas v(x,t) might be simple, v(X,t) can be extremely complicated.

The traditional characterization of velocity fields, usually v(xt), is in terms of streamlines,
streaklines, and pathlines. A graph of equation (3) for a single X, with t as a parameter,
gives the pathline of particle X. The streamlines corresponding to the velocity field v(x,t)
at time t is the solution of duds = v(xt), where s is a parameter and t is fixed. The
streakline passing through x' at time t is the locus of all particles which passed through x
during the interval 0 to t. Physically, this corresponds to the curve traced out by a non-
diffusive dye which is injected at x'.

A description of a velocity field in terms of streaklines and pathlines represents a nearly
complete characterization of the flow. However, analytical examples of streamlines,
streaklines, and pathlines are rare unless the flows happen to be trivial. The reason has to
do with the fact that many solutions are chaotic and therefore cannot possibly be written
down. In all the examples considered here the velocity fields are two dimensional and time
periodic. It should be pointed out that steadiness does not preclude chaos. The velocity
field, however, has to be three dimensional for this to occur.

The most studied case of chaotic advection corresponds to time-periodic velocity fields. A
time-periodic flow can be regarded as a composition of motions or, equivalently, the
iteration of a map. A few remarks regarding the composition of motions seem in order,
because there are subtle points which are often misunderstood. When two different
motions, 00) and (2), follow each other, they can be composed as

02[()Xa )JJ 4)

Here, the first motion acts for time ta, and the second motion acts for time tb. It is
understood that the final position of the particle after completion of the first motion
constitutes the initial position for the particle for the second motion. In general this is not
equivalent to

0()02(~b1. (5)
In this case, the first motion acts for time tb, and the second motion acts for time ta.

Even composing a single flow with itself can be a bit subtle. A straightforward
composition of flows, i.e., transforming X with 0 for t, and then transforming again for r
yields, in general, incorrect results. This occurs because the velocity field is time
dependent. When the Eulerian velocity field is unsteady, it matters not only where a
particle is located, but when it is found there. By contrast, when the velocity field is time
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independent, a flow may be composed with itself, and the composition is also
commutative, i.e.,

x(t + -r) = [0(X, r),t] = I,(X,t), Tl = O(X,t + T) (6)

If the velocity field is time periodic, i.e., v(x,t) = v(xt+7), then a flow may be composed
with itself, but only for an amount of time which is an integer multiple of the period of the
velocity field:

x(t + T) = O(O(X, T),t) (7)

x(t + nT) = 0((0...(XT)...,T),T),t) = O(O(X,nT),t) (8)

Flows due to a time periodic velocity field are frequently written as a mapping:

xX+I = Mx (9)

Customarily, the parenthesis around xn are omitted. In mapping notation, usually the initial
particle position is denoted as xo, rather than X. Equation (8) gives the position of a
particle at the end of the (n+ 1) period, given its position at the end of the nth period. Since
they are derived from periodic velocity fields, a mapping may be composed with itself:

XN+2 = MMx. = M 2x. (10)

a a

=M x, (11)

Of course, two different mappings may be composed together; i.e., if x, = Mx0 and x2 =
Nxi, then x2 = NMxo. In some respects, a mapping does not contain quite as much
information as the corresponding motion. However, it does possess nrost of the important
qualitative characteristics. It might be argued that these considerations apply to too simple
cases. However, a complete understanding of time-periodic flows seems necessary before
venturing into general unsteady flows.

4. Stretching and Regular Flows

Stretching lies at the heart of mixing. Stretching governs the fine scale of passive scalars
dispersed in the flow and acts as a fabric for the evolution of diffusing scalars in the flow.
To quantify the amount of stretching which occurs around a particle we follow a small
material vector AX attached to the particle. The length stretch, X, is simply the ratio of the
length a time t, 8x, to the initial length:
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& (12)

The orientation vector, denoted m, is simply AX normalized to unit length:

6X (13)

The time evolution of the length stretch can be written as

-1 = (Vv)':nm = D.-mm (14)

where D is the symmetric part of the velocity gradient tensor, Vv. By the Cauchy-

Schwarz inequality, A/ A is bounded by (D:D)12 (since the magnitude of the dyad mm is
equal to one). The normalized stretching rate is called the stretching efficiency:

D:.mm
D.D(15)

In an n-dimensional flow, the efficiency can attain a maximum value of (I-1/n)M2.

In many flow systems, the instantaneous values for both specific stretch rate and efficiency
vary erratically in time. More useful quantities are the time averaged values, a.,,, and e.,:

a,,=!-D:nmmndfI=d(InfL) df= (16)d t ew t

ea = I (D :D)m m df (17)

A system is considered efficient for mixing if the long time value (i.e., as t -+ oo) of a,,,
(or equivalently e..) tends to a positive value, regardless of the initial orientation of the

material filament AX.

A complicated stretching function, with a nearly constant time average, is a symptom of
"chaotic advection." Steady two-dimensional flows with V. v--O cannot produce chaotic
advection; stretching is linear in time, the stretching function decays as lit, and the
efficiency decays to zero. This can be seen in various ways. A steady area preserving two-
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dimensional flow is characterized by the streamfunction yf(x, y). Level curves

ip(x, y,t = fixed) give the instantaneous picture of the streamlines which in this case

coincides with the pathlines and streaklines. If the flow is bounded, the flow can be
divided into regions of closed streamlines and the stretching within each region is poor. In
fact, if we let T(qp) denote the period in the streamline V, it is then possible to show that
dx(t) is mapped into dx(t+T) at time t+T:

dx(t + T) = dx(t).[1- (dT /dV)(V )v+ higher order terms in dx (18)

and that the orientation of the filament after n cycles of the flow is given by

mt÷r = mo[ - (dT / dV)(V V)v]" / A,, (19)

where m0 is the initial orientation. As the number of cycles goes to infinity, the filament
becomes aligned with the streamlines and the stretching A, becomes linear with time
(Franjione and Ottino, 1991).

5. Chaos in Area-Preserving Flows

The most understood case of chaotic advection corresponds to area-preserving flows. The
understanding of this case resides in knowing something about the periodic points of the
flow and their associated manifolds. Let us review briefly some of the main concepts.
Given a flow x = O(Xt), P is a fixed point of the flow if

P = O(P, T) (20)

for all time t (i.e., the particle located at the position P stays at P). On the other hand, the
point P is periodic, of period T, if

P = O(P,nT) (21)

for n = 1, 2, 3.... but not for any t<T. That is, the material particle that happened to be at the
position P at time t=O will be located in exactly the same spatial position after a time nT [it
could be anywhere for nT<t<(n+1)T]. Similar definitions apply to a period-p points (for
example, a period-2 point returns to P for n = 2, 4, 6 .... ). It is important to stress that the
concept of periodicity depends on the frame of reference. Thus, for example, there are
periodic points in a moving frame in the cat-eyes portrait in a shear flow, but there are none
in a fixed frame (see Ottino, 1989a; Shariff et al., 1991). Periodic points can be classified
as hyperbolic, elliptic, or parabolic, according to the deformation of the fluid in the
neighborhood of the periodic point (the parabolic case being degenerate). The character of
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the flow in the neighborhood of the periodic point is given by the eigenvalues of the
linearized mapping:

DO(P, T). -4 k (22)

where D denotes the operation d(.)aI/dX. According to the value of the eigenvalues k,

the point P is called hyperbolic, elliptic, or parabolic:

Hyperbolic [A, I> 1 > JAL.1, ,;LA 2 = 1, (23a)

Elliptic ILk!I = 1 (k = 1, 2) but 'Lk * 1, (23b)

Parabolic Ak = ±1 (k = 1, 2). (23c)

The net motion in the neighborhood of an elliptic periodic point is rotation; the motion in
the neighborhood of hyperbolic point is contraction in one direction and stretching in
another.

Hyperbolic points have associated invariant regions of inflow and outflow called the stable
MWI(P)] and unstable [W"(P)] manifolds:

Ws(P) = {all X E R2 s.t. 0,(X) - P as t -oo} (24a)

Wu(P) = {all X E R2 s.t. ,(X) - P as t .oo} (24b)

Fluid particles leave the neighborhood of P through Wu(P) and get back to P via Ws(P).
Physically, the unstable manifold corresponds to a streakline injected at the periodic point.
By definition, the sets W1(P) and Wi(P) are invariant; a particle belonging to one of the sets
does so permanently and cannot escape from it. In bounded steady flows, the outflow
Wu(P) joins smoothly into the inflow Ws(P); in this case nothing interesting happens.

In time-periodic flows the manifolds might intersect non-tangentially. A point belonging
simultaneously to both the stable and unstable manifolds of two different fixed (or
periodic) points P and Q is called a transverse heteroclinic point. If P=Q the point is
called homoclinic; if P * Q the point is called heteroclinic. One intersection implies
infinitely many and sensitivity to initial conditions. The sensitivity to initial conditions, or
exponential divergence of initial conditions, is measured by means of Lyapunov exponents.
The Lyapunov exponent is the long-time average of the specific rate of stretching,
DlnA / Dt.
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(DinXM)m t'l = limj/ lnj.(X,Mi,t)? (25)
Dt4- t DJ

Thus, the average stretching efficiency can be interpreted as a normalized Lyapunov
exponent [with respect to (D:D)lil].

An important, and often misunderstood, distinction should be made between fixed points
of velocity fields and maps. Given a flow x = O(X,t), P is afixed point of the flow if

P = 0(P,t) (26)

for all time t (i.e., the particle located at the position P stays at P); equivalently v(P,t)=O for
all t. A critical point, on the other hand, corresponds to locations such that v(P,t)=O at
some time t. Fixed and critical points corresponding to isochoric two-dimensional flows
can be hyperbolic or saddle type, elliptic, or parabolic; the character of the fixed point can
be obtained by linearizing the velocity field (as opposed to the motion) near P. There is a
key difference between periodic points and critical points. A periodic point is a material
* point; a critical point is not. Thus, if one were able to place a labeled fluid particle at any
arbitrary time on a periodic point the particle will faithfully record the motion of the
periodic point for all times. Such a thought expcriment is not possible with a critical point.
A critical point might appear or disappear according to when the flow is looked at; a
periodic point cannot possibly disappear. This is a point that often escapes people
interested in visualizing flows. An estimation of the mixing abilities of flows based on
streamline portraits can be misleading. This has been pointed out in the past (Hama,
1962), but is worth repeating, primarily when viewed in the context of what happens in
two-dimensional time periodic chaotic flows.

A final comment should be made about periodic points. It often happens that the simple
prototypical chaotic systems studied in the context of chaotic advection present symmetry
properties. Mathematically, two maps A and B are said to be symmetric to each other if
there exists a transformation S such that

B = SAS-' (27)

If A = B, the symmetry is termed ordinary; if A-I = B, the symmetry is termed time-
reversal. In genera;, S can be a rotational symmetry or reflectional symmetry. An
important consequence of this is that if a map possesses symmetry, the periodic points are
found in symmetric arrangements.
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6. Statistical Tools

The bulk of the systems studied, to date, in chaotic advection are deterministic, exceptions
being attempts to introduce molecular diffusion into the description given by equation (2)
or random forcing instead of periodic forcing. However, to the extent that outcomes are
chaotic, statistical tools provide useful guidance in the analysis of various systems. A
particularly useful tool is single-parameter scaling, which sits somehow in the broader
context of multiplicative processes (Redner, 1990). A simple explanation of the main facts
can be put fortd in terms of stretching.

Consider a large number of points--each with an associated vector AX-advected by a
time periodic flow. Let dN(A) be the number of points with stretching between A and
A + dA. The probability of a point having a stretching A after n periods is
F. (A) = dN(A,)/d, A; similarly H. (log A) = dN(log A)/d(log A); the distributions F.(A)

and H, (log A) are related by H,, (log A) = AFn (A). Such distributions may be analyzed
by single parameter scaling.

The main idea is the following. A distribution, G(.), is said to have single-parameter self-
similarity if under a transformation of variables

x -- y = x / X(n), (28)

G,,(x) - q(y) = K(n).G.,(x), (29)

the function q(y) becomes (asymptotically) independent of n; X(n) can be obtained as the
ratio of two successive convergent moments, X(n)= milmi.1 where mi is given by

m,(n) = FO x'G,,(x)dx, (30)

whereas K(n) is given by

K(n) = CX(n)2 / Im(n) (31)

where C, is a constant. It is apparent that this technique allows for the computation of the
evolution of the moments of the distribution (Muzzio et al., 1991).

Another potentially useful technique is multifractal scaling. The most fruitful application of
this concept in fluid mechanics, so far, has been in the context of turbulence (Sreenivasan,
1991). The explanation, again, is in terms of stretching. Consider the field of A(x,t),
corresponding to a very large number of initial conditions X distributed in a domain V.
Divide V into boxes of equal size r and label each box by an index i. The measure p, (i) is
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the amount of A in the i• box, of volume Vr, normalized by the total amount of A in all
the boxes:

)4i)= .(x)dV] XJ( A.(x)dV1 (32)

In turn the measure Ji,(i) can be used to define the strength a(i) as

ILr(i) - ro(", a(i) = log(pu,(i)) / log(r). (33)

Multifractal behavior corresponds to the case where the probability density function of a
exhibits self-similar behavior over a range of length scales r. This implies that the number
of boxes N,((a) where a has values in a range between a and a + da can be expressed
in terms of an invariant function f(a), according to

Nr(a)da - r (a)da. (34)

f(a) is called the multifractal spectrum. The use of multifractal concepts in chaotic
advection is discussed in Muzzio et al. (1992).

7. Systems Studied

It might be argued that the typical systems studied, to date, in the context of chaotic
advection are unrealistic-and hence irrelevant-for an oceanographic viewpoint. That
would be a mistake. The proper way to understand these examples is not as faithful
representations of real systems but rather as analyzable prototypes yielding physical insight
and increased basic knowledge. They act, in short, as a sort of yardstick with respect to
which we can measure the understanding of realistic advection problems. Undoubtedly
there are situations, such as tidal systems, that are well suited for immediate applications
(Ridderinkhof and Zimmerman, 1992). Applications to more complex systems still lie in
the future.

Possibly the simplest systems are the tend-il-whorl flow (Khakhar et al., 1986) and the
egg-beater flow (Franjione and Ottino, 1992). The tendril-whorl flow is a discontinuous
succession of extensional flows and twist maps. The physical motivation for this flow is
that, locally, any velocity field can be decomposed into extension and rotation. The egg-
beater flow on the other hand can be seen as a flow occurring in a square region of
observation periodically invaded by shear flows entering at right angles from each other.
The first shear flow acts in a "horizontal" direction:

x,, = x, + Tv(y,) (35a)
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Y.., = Y., (35b)

where T is the duration of the flow. This flow is written as x.+, = Hx., where x=(xy).
The second flow acts in a "vertical" direction:

x.+I = x. (36a)

y'., = y. + Tv(x.) (36b)

and is written as x.,= = Vx,. The flow occurs in a domain which is periodic in both the x
and y directions. The overall mapping may be written as the composition of both maps,
i.e.,

xn+l = VHx. = Ex.. (37)

A sequence of actions of the horizontal and vertical components, H and V, is denoted as
VHVHVH... and is an example of a mixing protocol.

The next simplest, but historically, the first flow analyzed in the context of chaotic
advection, is the blinking-vortex flow (Aref, 1984; Khakhar et al., 1986) which consists of
two corotating fixed point vortices that blink on and off periodically with a constant period
T. At any given time, only one of the vortices is on, so that the motion is made up of
consecutive twist maps about different centers.

All these flows are computational. There are several experimentally realizable flows
though, mostly two-dimensional, although a couple of experiments have been carried out
in three dimensional flows as well. The first example of a two-dimensional flow is the
cavity flow (Chien et al., 1986; Leong and Ottino, 1989). The cavity flow consists of a
rectangular region capable of producing a two-dimensional velocity field in the x-y plane.
Two opposing walls can be moved in a steady- or time-dependent manner inducing
circulation within the cavity with one of multiple cells according to the aspect ratio of the
cavity and the mode of operation of the walls. Several new studies are focusing on
transport away for open cavities (Jana and Ottino, 1992) as well as systems involving one
or two cylinders rotating in a circular containers. The two cylinder case is the so-called
journal bearing flow (Chaiken et al., 1987; Swanson and Ottino, 1990). Only a few studies
have been reported for three-dimensional flows (Kusch and Ottino, 1992).

There are several insights that have been gained in terms of these flows. The first insight is
that passive structures in time-periodic flows evolve in an iterative fashion; an entire
structure is mapped into a new structure with persistent large-scale features, but finer and
finer scale features are revealed at each period of the flow. Thin striations are produced at
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the expense of thicker ones, and length scales (characterized by the first moment of a
striation thicknesses distribution) decrease exponentially in time. The length stretch and
striations thicknesses are inversely related. It has also been found that islands form
coherent regions that translate, stretch, and contract periodically and undergo a net rotation,
preserving their identity. Islands display symmetry at regular intervals of time. Island
symmetry is caused by symmetric placement of elliptic points. The flow within islands is
weakly rotational, the stretching is linear, and the rates of rotation are usually much slower
than in the rest of the flow. Rotation notwithstanding, it would be a gross mistake to
identify these coherent regions as regions of vorticity.

Another insight has to do with island destruction. For example, using the case of the egg-
beater flow, it is known what sequences of H's and V's lead to best mixing in a minimum
number of periods. Another insight has to do with resonance and conditions leading to
coupling between a base flow and a perturbation. Some simple cases admit analytical
treatment. A recent example in the context of oceanography is the paper by Samelson
(1992) addressing the issue of fluid exchange across a meandering jet in terms of the
Melnikov method.

Another general statement that can be made regarding chaotic advection and transport is
that the rate of spreading is controlled by the unstable manifolds of the hyperbolic points
belonging to the lowest order periodic points. The stretching is roughly proportional to the
value of the eigenvalues and is inversely proportional to the period of the point. An
analysis in terms of manifolds can yield valuable information regarding the transport of
material in the flow. All applications so far have been in terms of rather idealized flows.
Consider, now, the application of these concepts to one of the most studied flows in fluid
mechanics, but from the viewpoint of transport still a rather poorly understood flow. The
flow considered is the time-periodic vortex shedding past a two-dimensional circular
cylinder with diameter D placed in a stream of fluid moving with uniform speed U in x-
direction. As is well known if Re = pUD/I << 1 the flow is symmetric with respect to
both the x-axis and the y-axis; as the Re increases the flow loses y-symmetry and two
attached eddies form behind the cylinder which grow in size with increasing Re until, at
Re = 40, the flow ceases to be steady and becomes time-periodic. Experiments show that
when Re = 100 eddies are shed periodically from the top and bottom part of the cylinder:
all the vortices originating from the top rotate in one direction; all the vortices originating
from the bottom rotate in the opposite direction while the whole pattern of vortices travels
downstream but with a speed smaller than U. As Re is increased above 200 or so, the
flow develops three-dimensionality, time-periodicity is lost and the flow ultimately
produces a turbulent wake. The case of interest here is in the range 100<Re<200.
Streakline experiments produce the so-called von Kdrmdn wake, something that has been
known for eight decades or so. However, an understanding on how transport proceeds in
this flow, i.e., how parcels of fluids move from one place to another and entrain material, is
still far from being clear. Instantaneous streamlines offer only partial help, even though
most of the recent attempts at explaining this topic address the problem from this
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viewpoint (Perry et al., 1982). An analysis in terms of manifolds improves the picture
considerably (Shariff et al., 1991).

Such an analysis relies on the identification of two classes of periodic points: (i) parabolic
periodic points associated with separating and attaching streamlines, which produce
unstable and stable manifolds that are associated with zero wall shear, parabolic points, and
(ii) a period-one hyperbolic point located in the wake itself. Such points move as function
of time and return to their original location after one full period. The typical picture is as
follows: the streamline corresponding to one of the separation points joins smoothly with
an attachment point to form a separation bubble whereas another separation streamline
goes into the wake of the flow. Stable and unstable manifolds produce heteroclinic and
homoclinic intersections. In this particular flow, four types of transversal intersections are
possible: heteroclinic intersections are produced by intersections of stable manifolds of the
period-one hyperbolic with unstable manifolds of the periodic points attached to the
cylinder as well as by unstable manifolds of the hyperbolic point intersecting the stable
manifolds attached to the surface of the cylinder, homoclinic intersections are produced by
crossings of stable and unstable manifolds belonging to the hyperbolic point as well as
those of parabolic points attached to the cylinder. The complete manifold picture of the
system is, however, more complex since there are additional period-one hyperbolic points
close to the surface of the cylinder as well as higher order periodic points; they however,
seem to contribute much less to the gross aspects of the transport in the flow. The
manifold structure results in the qualitative picture shown in Figure 3. Figure 4 shows
computed pictures corresponding to Re= 180. For the sake of clarity Figure 4a shows only
the manifold structure corresponding to the upper wake; whereas Figure 4b shows the
manifold structure corresponding to the lower wake.

The manifold structure provides a template for stretching and transport and provides a
qualitative picture for the stretching and folding of a streakline in the wake. More and more
details are revealed as the system evolves. This sort of iterative process has implications for
the distribution of stretching within the flow. This is particularly clear in the case of time
periodic flows. In this case the stretching between period 0 and period n, A0, can be
expressed as a multiplication of stretching corresponding to individual periods, i.e.,

Ao., = A0,1.2 ,*n-ln (38)

where Xi-1.i is the stretching experienced in the interval i- I to i. Moreover, due to the
chaotic character of the flows, the ).,I-.i's quickly become uncorrelated. These two
observations suggest that stretching can be considered as a multiplicative process with
loosely correlated steps and are, therefore, an ideal situation for the application of scaling
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Figure 3. Qualitative picture of manifold structure in the vortex shedding regime of flow behind a
circular cylinder.

concepts. The application of single parameter scaling concepts shows that as the number
of periods increases beyond 5 or so a wide portion of the probability density functions of
stretching overlap when re-plotted in scaled form. Closer examination of the scaled results
reveals additional insight; in general, flows with islands exhibit spatial segregation with
respect to stretching even within chaotic regions; one set of points wanders throughout the
'bulk of the chaotic region' and undergoes exponential stretching; the other stays close to
regular islands for many periods and stretches very slowly.

Another useful tool is multifractals. The simplest application of multifractal concepts to
mixing arises in the case of flows with no islands. In this case, the spatial distribution of
stretching is well described by multifractal scaling if the very high tail of the distribution of
stretchings is neglected. Moreover, different methods for obtaining the multifractal
spectrum f(a) agree reasonably well, producing a time-independent self-similar
distribution. For flows with islands (e.g., the flow between eccentric cylinders), the
spectrum f (a) is time-dependent and therefore, it is not self-similar). However,
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(a) Re= 180

(b) Re= 180

Figure 4. Intersection between unstable manifolds associated with parabolic points attached to the
cylinder, Pu, and stable manifolds associated with a periodic hyperbolic point, H, at Reynolds number
180: (a) represents the manifold structure corresponding to the upper wake, (b) the represents the
manifold structure corresponding to the lower wake.

multifractal concepts suggest a single-parameter scaling for the distribution of Lyapunov
exponents that works well for flows without islands (Muzzio et al., 1992). A possible
point of confluence of scaling concepts, multifractal descriptions and transport is in the
interpretation and prediction of dispersion of passive scalars. Some work has been done
(Pasmanter, 1988), but it is obvious that much more remains to be done.
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8. Conclusions

Some familiarity with chaotic advection appears to be a necessary ingredient in developing
an understanding of mixing and dispersion in complex flows. It is apparent that the current
kinematical vocabulary necessary to deal with stirring and mixing needs to be amplified.
Chaotic advection clearly demonstrates the pitfalls of flow visualization in terms of velocity
field information such as instantaneous streamlines and particle paths; both can be
relatively simple and streaklines extremely complex. Concepts such as periodic points and
manifolds seem both useful and necessary in interpreting issues involving coherence and
transport. The flow within coherent islands in two-dimensional chaotic flows is weakly
rotational (in the sense that there is a net twist) but that rotation notwithstanding, it would
be a gross mistake to identify these coherent regions as regions of vorticity.

Advances, to date, are mostly in the form of physical insight and basic knowledge obtained
in terms of computational and experimental studies in simple flows. Currently available
results can be used in two different ways: (i) to make qualitative predictions regarding the
behavior or more complex systems, (ii) as a yardstick with respect to which we can
measure the understanding (or lack thereof) of such problems. Most studies are for two-
dimensional flows but attempts at extending analyses to three-dimensional cases are
currently underway. However, many problems of interest in ocean sciences are inherently
two-dimensional. The most obvious example might involve lateral mixing descriptions in
terms of large circulation models. Other problems can be encountered at smaller scales.
Examples might include stirring in tidal systems, an inherently time periodic case,
transport and entrainment in meandering jets, and penetrative convection under ice shelves.
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ABSTRACT

Three topics relating to chaotic ocean physics are discussed. These are (1) low order El
Nifto dynamics, (2) lateral stirring processes, and (3) linear ocean waves in the geometric
limit. Each topic is discussed separately; emphasis, in each case, is given to the manner in
which ideas associated with chaos and low-order dynamical systems complement more
traditional approaches to the same problem.

INTRODUCTION

In this paper three topics relating to chaotic ocean physics are discussed. This fist is not
intended to be an exhaustive list of topics in ocean physics to which ideas relating to chaos
can be applied. Our discussion of these three topics-which were chosen because the
author has some familiarity with them--serves to illustrate several important concepts
likely to be useful in other oceanographic applications as well. It is our feeling that the
ideas relating to chaotic dynamical systems discussed in this paper are useful but must be
applied in a sober fashion which complements more traditional approaches. When
properly applied, these ideas provide a vehicle to increase our understanding of various
physical processes in the ocean in an evolutionary fashion. Expectations of gaining new
insight of a revolutionary nature are not likely to be realized.

In each of the three sections that follow, we discuss a topic in ocean physics (low-order El
Nifio dynamics, lateral stirring processes, linear ocean waves in the geometric limit) to
which ideas associated with chaos can be applied. Background material relating to
dynamical systems and chaotic dynamics is introduced as necessary in the context of the
problems treated. This approach is natural inasmuch as our intention is not to provide a
tutorial on chaos; instead, we seek to demonstrate that these ideas are useful in the context
of specific problems in ocean physics. All three topics discussed in this paper are treated
in more detail elsewhere; references are provided below. So as not to duplicate this
material, we focus here on the rationale for applying ideas relating to chaos and low-order
dynamical systems. Stated somewhat differently, in this paper we focus more on the
questions being addressed than on details of the subsequent analysis. Some unifying
comments and observations concerning chaotic ocean physics are included in the final
section.
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LOW-ORDER EL NINO DYNAMICS

The El Nifto/Southern Oscillation (ENSO) system is a quasi-periodic oscillation of the
tropical Pacific Ocean and overlying atmosphere (see, e.g., Enfield, 1989). The ENSO
system involves interactions among eastern basin sea surface temperature (SST), zonal
trade winds and the thermocline depth (Bjerknes, 1969; Wyrtki, 1975). El Nifto
events--characterized by anomalously high eastern basin SST, weak trade winds, and a
shallow western basin thermocline-are separated by three to five years, typically.

Models of the ENSO system vary considerably in complexity. At one extreme are coupled
ocean-atmosphere general circulation models (see, e.g., Neelin, 1990). That such models
produce ENSO-like behavior should come as no surprise; ENSO behavior is surely
contained in the complicated coupled equations of motion/state which were numerically
solved. It is our feeling that simpler models-provided they adequately reproduce
essential features of the system being modeled-are more insightful inasmuch as they
better elucidate the essential physical processes involved. This leads naturally to the
question of whether the essential physics of the ENSO system can be captured in simpler
models.

The simplest type of model of the ENSO system which has been proposed consists of a
small number (n, say) of autonomous ordinary differential equations,

dx- = fA (1)
dt

The solution 0(t) of these equations describes the temporal evolution of the system. The
x,'s (i = 1,2,...n) in such a model would include variables such as anomalies of eastern
basin SST, zonal winds and western basin thermocline depth. Vallis (1986) was the first
to propose a model of the ENSO system of this type. That this model produces
unphysical behavior for some choices of parameters (see, e.g., Vallis, 1988) is, in our
opinion, not terribly important: the significance of the Vallis (1 986) paper is the
suggestion that the essential physics of the ENSO system can be captured in severely
truncated physical model consisting of a low-order, autonomous dynamical system. The
word autonomous means that the functionf in (1) does not depend explicitly on time;
physically, this restriction means that any quasi-oscillatory behavior in x,(t)-which might
be associated with the occurrence of El Nifuo events-is the result of internal, self-
sustained dynamical processes rather than being the response to external stochastic
forcing. More recently, improved low-order models (autonomous dynamical systems) of
the ENSO system have been proposed by Schopf and Suarez (1988) and MUnnich et al.
(1991). Before proceeding, it is worth noting that the notion of simple ENSO
dynamics-during the growth phase of El Niflo events, at least-is generally accepted and
dates back to the seminal work of Bjerknes (1969) and Wyrtki (1975); the notion that the
complete ENSO cycle-and, in particular, the triggering of El Nifto events--results from
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internal dynamics (i.e., that these oscillations are self-sustained) is not universally
accepted.

These considerations led Bauer and Brown (1992) to address the question of whether
observations of the ENSO system are consistent with underlying low-order dynamics.
This question was addressed via the process of phase space reconstruction whereby
discrete samples of a single variable, y(t), j = 1,2, ... (monthly samples of eastern basin
SST were used in the Bauer and Brown analysis), are used to construct a discretely
sampled multidimensional phase space portrait, y(td, k = 1,2, ... A simple way to carry
out this process is to use delay time coordinates: y,(t) = y(td, y2() = y(tk+), y3(t) =
y(t4. 2), etc. Surprisingly, perhaps, the reconstructed, discretely sampled phase space
trajectory y(tk) constructed in this fashion can be shown (Broomhead and King, 1986),
under appropriate conditions, to reproduce with only minor distortion (a diffeomorphism)
the true multidimensional phase space portrait x(t) of the underlying dynamical system.
Unfortunately, this procedure is sensitive to noise and therefore generally works poorly on
geophysical data. The shortcoming was overcome by Bauer and Brown by using a
technique developed by Broomhead and King (1986)-see also Vautard and Ghil
(1989)-wherein temporal empirical orthogonal functions are used as basis functions for
the reconstructed phase space trajectory. Details of this analysis will not be repeated here.
The results of this analysis suggest that the underlying ENSO dynamics are approximately
those of a low-order system; we urge the reader to carefully assess the evidence presented
and come to his/her own conclusion.

It is worth emphasizing in this context that the question of chaotic ENSO dynamics is
secondary to the question of whether ENSO dynamics are approximately those of a low-
order system. If the later question is answered affirmatively, then questions concerning
chaotic behavior become relevant. Among these are (1) Does the system evolve
chaotically, and if so, what is the predictability timescale (reciprocal of the largest positive
Lyapunov exponent)? (2) What is the dimension of the corresponding attractor? At the
present time these questions are, in our opinion, premature. It is worth pointing out,
however, that if the underlying dynamics are approximately those of a low-order
system-even a chaotic one-this would lead to some long-term predictability in the sense
that it would be known that the system's state vector x must, at all times, lie on some
attractor-although its precise position may not be predictable.

LATERAL OCEAN STIRRING PROCESSES

In the ocean, many water properties such as temperature, salinity, oxygen content or
pollutant concentration can be treated approximately as passive fluid parcel markers.
Passive means that the flow field evolves independently of the initial distribution of the
tracer. In order to understand the distribution of these oceanic tracers and how they
evolve in time, one needs to understand the process by which passive tracers get
redistributed. Our discussion of this process focuses on the lateral stirring (advective



376 BROWN

tracer transport) process; we ignore the quasi-diffusive 3-d behavior that takes place at the
smallest scales (internal wave and smaller).

The advective transport of a passive tracer in a two dimensional incompressible flow is
described by the equation,

do do do(2)
&t dydxhdxdyj 1

subject to the initial condition 9(x,y,O) = O0 (x,y,t). Here O(x,y,) is the tracer
concentration and i(xy,t) is the streamfunction. It follows from (2) that 0 is constant
following particle trajectories, x(t), y(t), which satisfy

dx dV ON -d d x (3)

Thus, in order to understand the temporal evolution of O(x,y, t)--even in a statistical
sense-one needs to understand the behavior of particle trajectories and understand the
implications of the form of the Lagrangian equations of motion (3).

The Lagrangian equations of motion constitute a generally nonautonomous Hamiltonian
system with one degree of freedom; (x,y,t) plays the role of the Hamiltonian H(p,q,). It
is extremely important to distinguish integrable Hamiltonian systems from nonintegrable
ones. For the system (3) integrability implies that there exists a single-valued function
X(x,y,t) which is constant following particle trajectories, dX/ai = 0. If the flow is steady,
dIV/& = 0, then the system of equations is said to be autonomous and the streamfunction is
the required constant of the motion, dWI/dt = 0. This follows from equations (3). In
nonsteady flows, however, the equations of motion (3) are nonautonomous and are
generally nonintegrable. This observation is important inasmuch as nonintegrability is a
necessary-but not sufficient--condition for chaotic motion (see, e.g., Tabor, 1989).

The distinction between chaotic and nonchaotic particle trajectories is extremely important
in the context of passive tracer transport. The reason is that chaotic particle trajectories
exhibit extreme sensitivity to their initial conditions. This means that neighboring particle
trajectories diverge from one another at an exponential rate, on average. It follows that
material lines of fluid will also grow exponentially, on average. This type of behavior
leads to very efficient stirring (advective transport) of a tracer, and, in turn, enhances the
mixing (diffusive transport) of the tracer at smaller scales. These ideas are discussed in
more detail by Ottino (1990) (see also the contribution by Ottino in this volume) and
Brown and Smith (1990, 1991). The latter publications also address the question of
whether proxy ocean particle trajectories (acoustically tracked submerged SOFAR floats)

exhibit extreme sensitivity. Previously, Osborne et al. (1986) had addressed this question
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using satellite-tracked surface drifters. This work suggests that float/drifter trajectories do
exhibit the important property of extreme sensitivity which is associated with chaotic
systems.

It is important to note, however, that typical oceanographic realizations of ft(x,y,t) are
significantly more complicated than the idealized systems to which notions relating to
chaos are normally associated. Specifically, almost integrable systems with periodic time-
dependence are fairly well understood (see, e.g., Tabor, 1989). In such systems, the onset
of chaos is associated with resonances between periodic motion in the nearby integrable
system and the period of the temporal variations of the streamfunction. It is not clear
whether results which apply to time-periodic streamfunctions carry over to the problem
where the streamfunction has more general time dependence; there remains a significant
gap between the complexity of the ocean and that of the idealized systems treated in
textbooks on nonlinear dynamics.

This gap in complexity offers challenges to both oceanographers and nonlinear dynamicists
and provides the opportunity for the two groups work together in a mutually beneficial
fashion. In fact, this has already happened. In the aforementioned work of Osborne et al.
(1986), the authors argued that the fractal characteristics of drifter trajectories was
attributable to underlying stochasticity (power law energy spectrum of the velocity field)
rather than being associated with a strange attractor. This work led to several studies on
the relationship between stochasticity and fractal behavior.

LINEAR OCEAN WAVES IN THE GEOMETRIC LIMIT

In the geometric (ray theoretical) limit, any type of linear wave motion can be described
using a ray approximation (see, e.g., Lighthill, 1978). Such a description is valid when the
properties of the ocean, including its boundaries, vary slcwly on a scale of wavelengths.
The ray equations are

dx, _ d-w dk, d_-v
dt dk, ' dt &ix

where

co = (OM). (5)

Here the xis are position coordinates and the k1's are the corresponding components of the
wavenumber vector. The form of the function i4_, _x)-the dispersion relation-depends
on the type of wave being considered. For example, for surface gravity waves
propagating in water of variable depth h(x_ = h(x,y),
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(0(kx) = [glAJ tanh(IAth(x))] (6)

In the following, some important ideas are illustrated using this form of the dispersion
relation. We emphasize, however, that equations (4) and (5) are very general and that the
following considerations are applicable to any type of linear wave motion.

Equations (4) and (6) constitute an autonomous Hamiltonian system with two degrees of
freedom; co(k, x) serves as the Hamiltonian H(f, q). Autonomous means that the
Hamiltonian finction does not depend explicitly on the dependent variable, time.
Integrability of such a system requires that two independent constants of the motion exist.
One of these is co(k x); it foll,,ws from equations (4) that dca/dt = 0. Only for very special
bathymetric variations h(xy) does the second required constant of the motion exist. For
example, if h = h(x), then it follows from the second of equations (4) that dk/dt = 0; under
such conditions ky is a second constant of the motion. Such behavior is not typical,
however.

In the absence of a second constant of the motion, the possibility of chaotic ray motion
exists. Numerical experiments strongly support the expectations that, under such
conditions, ray trajectories exhibit chaotic behavior (see, e.g., Brown et al., 1991; Smith et
al., 1992; Abdullaev and Zaslavskii, 1989). These studies, however, assume spatially
periodic ocean properties. This assumption allows readily available mathematical tools to
be exploited. Unfortunately, a similar set of tools is not available to treat problems
involving more realistic (nonperiodic) ocean structure. Chaotic behavior, which
presumably persists in some form in realistic ocean environments, is characterized by
exponential growth of small errors and leads unavoidably to the conclusion that, under
such conditions, predictability of ray trajectories is limited to small times.

Does this imply a lack of predictability of the corresponding wavefield? Probably not.
The reason is that the ray description of the wave motion is a nonlinear approximation to a
linear wave equation. (For the system described by (4) and (6) the corresponding linear
wave equation is the mild slope equation-see, e.g., Mei, 1983). Because nonlinearity is a
necessary condition for chaos, the linear wave equation does not admit chaotic solutions.
These solutions may have different properties, however, depending on whether the
corresponding ray trajectories are chaotic or not. (There is a vast literature on the
corresponding quantum mechanical problem-see Reichl, 1992, for an excellent recent
review.) Wavefield statistics, for example, may be very different depending on whether
the corresponding ray trajectories are chaotic or not.

It should also be noted that for ocean waves the linear wave equation is itself an
approximation to a nonlinear wave equation. This leads to more questions. Does the
nonlinear wave equation admit chaotic solutions, and, if so, is there any connection
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between this chaos and chaotic behavior in the corresponding ray trajectories? The
answers are currently not known.

FINAL REMARKS

Our discussion of the topics in the three preceding sections led to a number questions
relating to chaotic ocean dynamics. For the most part, the questions corresponding to the
different topics were not the same. This is consistent with our view that chaotic ocean
physics should not be treated as a unified branch of ocean physics. Rather, results from
studies of low-order dynamical systems should be thoughtfully applied to selected
problems in ocean physics in a manner which complements more traditional approaches to
the same problem.

Not surprisingly, we have seen that the ocean is more complicated than the systems
normally studied in the context of nonlinear dynamics. This discrepancy should be viewed
as a challenge to both physical oceanographers and nonlinear dynamicists; both groups
stand to benefit from collaborating. The example given earlier of Osborne et al.'s (1986)
work motivating studies on the relationship between stochasticity and fractal behavior is
an excellent example of precisely this type of symbiotic relationship.
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Abstract

The theory of dissipative chaos appears to promise great insights into the behavior of
natural systems like the ocean. Results based upon model simulations show the possibility
that phenomena such as El Nifuo are chaotic. Chaotic phenomena also demonstrate that
certain traditional methods are not appropriate for chaotic systems. For example a
perturbation from the linear solution provides no insight into the behavior of the nonlinear
system if that system is chaotic, even if the nonlinear terms are small. The existence of
chaos implies an inherent limit to the predictability of a system, this is one reason why it is
important to determine if a system is chaotic.

However, when one attempts to make estimates of measures of chaos (dimensions,
Lyapunov exponents, etc.) from oceanographic data one is faced with the fact that the
methods that quantify chaotic properties of systems from data require an enormous
number of degrees of freJom for any reasonable degree of confidence. Again traditional
analysis techniques can make matters worse and not better. An example of this is the use
of a smoothing filter: the filter can increase the dimension of the resulting data set by as
much as 1.

I What chaos might contribute

There are several ways that ideas from chaotic dynamics may contribute to an
understanding of the ocean. The primary question is whether or not any oceanic
phenomena are chaotic.

If an oceanic phenomenon is chaotic, that will automatically impose inherent limits to the
predictability of the system. If this is so, it is important to be able to quantify what the
predictability limit is.

1.1 Are phenomena such as El Nifio chaotic?

A first question to ask is whether any oceanic phenomena are actually driven by chaotic
dynamics. The identification of chaos in the ocean would mean that the relatively
complicated behavior that is observed could be described in terms of a system with a small
number of degrees of freedom. This possibility that El Niuio is chaotic has been
investigated by looking at the available data (Fraedrich, 1988), and by model studies
(Vallis, 1986).
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Figure 1. The Southern Oscillation Index, a monthly time series of sea level pressure differences between
Tahiti and Darwin, Australia (These data are scaled to standardized dimensionless units so that the series
has a zero mean and a unit standard deviation.)

Figure 1 shows the Southern Oscillation Index; its irregularity is visually reminiscent of
chaotic time series. This time series has fewer than 500 data points in it, which is
unfortunately too few to make reliable calculations of the dimension of the underlying
system. Model studies of El Nifuo indicate that it is possible to mimic time series such as
the Southern Oscillation Index with models that are chaotic. Figure 2 shows the Vallis
(1986) model. This very simple model produces an El Nifio event with about the right
periodicity. The system is chaotic and has a Lyapunov dimension of 2.088 (see Fig. 3).

1.2 Chaotic Lagrangian trajectories?

The irregular nature of drifter trajectories is suggestive of either turbulence or chaos,
(see Fig. 4). The possibility that these trajectories are fractal has been investigated by
several people (Osborne, Brown and others). The major problem with these analyses is
that the data records are short (typically about 1000 points), while the methods used in
chaotic analysis require one or two orders of magnitude more data for confident estimates.



MEASUREMENTS OF CHAOS IN THE OCEAN 383

U - Figure 2. The Vallis(vnw %wmi Derflaft drvnb (gT (1986) ENSO model.

-A-* ~ per ceanTop: west-east section of
wbw fte hoftoael d-" teawenvesOffeled theequatorial Pacific

heftnta adectes, Ocean, defining symbols
up-ef~tw W Co .0"used in the model.

&Z -- -- - -- --- -- - - - --- -- -Center: model
equations. Bottom: the

y* ~ ~ ~ 00 AX.....~yO.cean chaotic attractorax ConsantI.U eUvt*ta resulting from the model
equations with

t parameters A= I year-
and B=2m-2 s 2 oC 1

du

T=B(TE -Tw) /2A - C(u - u)

dTw u-(T TE) -A(Tw -T*)

dTE Fu(TT) A(T -T)

TE



384 CARTER

Lyap......portent I Figure 3. The Lyapunof spectrum of

.va.dat. - the Vallis attractor. The panels show
0.3 the convergence of a numerical

asymptotic Value *0.0597 estimate of the respective Lyapunov
0.2 exponents as a function of time. The

noted asymptotic value is the final
o.1 estimate of the exponent. The time

0 units are nondimensional and
0 .correspond to one unit being

-0.1 equivalent to one week. The Lyapunov
dimension (calculated using the

-0.2 Kaplan-Yorke equation (28)) of this
system is DA =2.087.

-0.3

-0.4 L , A'
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Lyspunov exponent 2

0.02

-0.02
asymptotic 'value =-0.0021

-0.04

-0.06

-0.00

-0.1

-0.12

-0.14

-0.16 L L L L _I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Lyapunov exponent 3

0
'val.dat' -

-0.1

-0.2 asymptotic value - -0.661

-0.3

-0.4

-0.5

-0.6

-0.7

-0.0 A _L I l 0 ' 6

0 200 400 600 600 1000 1 200 1400 1600 1800 2000

Time (weeks)



MIEASUREMIENTS OF CHAOS IN THE OCEAN 385

38

344

&7S70 -65 -60 -55 .50

................................

40

.38

0 12C
3.i 7 65 -60 -55 -So

44 t* .r

3-

364 .

?-5-045 -60 .55 .51,

Longitude Wdee)

Figure 4. Complete trajectories of RAFOS floats in the Gulf Stream. The tick marks are at daily intervals;
the typical float track is 45 days long. Floats in the upper panel were deployed on the 150C surface, the
middle panel ai 120C, and the lower at 90C.
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Early calculations by Osborne et al. (1986) for a year of measurements of three surface
drifters indicated a correlation dimension of about 1.4. More recent calculations on
SOFAR float trajectories (Brown and Smith, 1990) are more ambiguous. Based on
available observations, the current conclusion is that float trajectories are probably not
chaotic. They are more likely to be controlled by turbulent processes.

1.3 Limits to predictability

If a system is chaotic, then trajectories that are nearby in phase space will diverge
exponentially. Increasing the accuracy of the observations does not help, since
predictability only increases linearly with the number of digits.

Another possible situation that can impose limits on predictability is the possibility that the
boundary between the states of the ocean/atmosphere is fractal. As an illustration of this
possibility, consider the determination of the basins of attraction (i.e., the root that is
reached for a given starting point) for the problem of finding the roots of

Z3-1-=0

for complex z, by using Newton's method. Here Newton's method for this complex
polynomial is the "physics" for a system which ultimately reaches one of three states. It
turns out that the boundaries of the regions that reach a given root are fractal and have
the remarkable property that any boundary point is a boundary between all three domains,
these boundary points define a set known as a Julia set (see Fig. 5). The implication for
predictability is that for measurements with a given finite error, there are some regions that
are perfectly predictable and other regions where there is no predictability at all.

1.4 Perturbation expansion of chaotic models

One common technique in solving nonlinear systems is to do a perturbation expansion
about some small parameter. We demonstrate here that a conventional perturbation
expansion may not be helpful when the system is chaotic because the perturbation solution
has no chaotic behavior.

Look at the Lorenz system of equations,

a=r(y- x) (1)
=Y - xz + rx (2)

S = xy - bz. (3)
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- 4'2

4-1

Figure 5. The basins of attraction for the roots of z = (-1 - 43) / 2), for complex z, using Newton's
method. The starting points that converge to the root z = 1 are colored grey, points that converge to the

root z = (-1 + i4) / 2), and points that converge to the root z = (-1 - iNF3) / 2) are black. (The center of
the figure is at the origin.)

The parameter r is the ratio of the Rayleigh number divided by the critical Rayleigh

number. The parameter a is the Prandtl number. The third parameter b is related to the

horizontal wave number of the system. Typical values, r= 28, o = 10, b = 8/3, dimension =

2.05. A common second set of values, r = 45.92, a = 16, b = 4, dimension = 2.067.

The interesting cases are where the Rayleigh number ratio r is large, which suggests that
we could expand the system of equations around a parameter proportional to the
reciprocal of r (which would be small).
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If we define

e = r (4)
and let

x = ex

z' =(e z- 1) (5)
t'= t/ E,

Then equations (1) - (3) become (after dropping the primes)

S= y - Eox (6)
S= -xz - ey (7)

= xy -eb(z + a) (8)

Now consider the expansion of x,y, and z in terms of the parameter e

x = Xo + X + E'X2 +...

Y = YO + EY, + EY2+-'.. (9)
Z = z4 +E; +eZ2+....

Introducing (9) in (6) - (8), gives the order 0 equations,

S=Yo (10)
Yo = -oo(11)

= XoYo (12)

and at order e, the system,
,= - aoX (13)

S', = - X1Z- - YO (14)
=x0y, + xyo - b(z + a). (15)

The interdependence of the order 0 equations can removed with some algebraic
manipulation. Use (11) and (12) to eliminate xo

Yo4o + 4=7

-[y2 +(16)

Integrating this,
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yo1 =-z4 + [yo1(0) + z4(o)] (17)

where the terms in the brackets of equation (17) are the initial values of y0 and z. We will
define this (constant) term as

C23 = yO()+ (18)

If we go back to (10) and (12) to eliminate YO,

.1 2ddtfzo 1Xoj = 0 (19)

Jntegrating this gives

z 1=xL- x(O)-zo ; (20)

here the terms in the brackets of equation (20) are the initial values of x. and z3. We will
define this term as

C 13  I X,(O)-z (0). (21)
2

Using (17) in (10) gives
(-o)2 = + C23. (22)

Now using (19)

(Xo) 2=--X4 o+C1 3x +[ q 3 -C131 (23)
4

Given the solution to this equation, yo can be solved for by using (10). Then given
x. and yo, zo can be solved for by using (12). An equation for zo can also be derived by
using manipulations similar to that used in deriving (23) (using equations (17) and (20) in
(12) to eliminatexo and yo) , to give

(4)2 = -2z4 - 2C13zý + 2q.Z + 2C1 3C23. (24)

Equation (22) can be solved analytically, its solution is a Jacobi elliptic function

x0 = Asn(tjm).
The other components can also be determined,

yo = Acn(tlm) dn(tlm)

S= dn2(tjm) mcn2(tlm) (26)
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(where m = -A 2 / 4) so the system is well behaved (not chaotic). The first order equations
(13) - (15) are linear so they cannot possibly lead to chaotic solutions. Thus we have
shown that while the actual system can be chaotic, the perturbation solutions may not be

Figure 6 shows a phase portrait of the solution of the full system (6) - (8), tht zero order
system (10) - (12), and the perturbation solution to first order (i.e., with e times the
solution of( 13) - (15) added to the zero order solution). The perturbation solution tracks
the nonlinear solution for a short while then it moves off in a different direction. The
perturbation solution also rapidly grows to order one, so that the expansion (9) is valid for
only a limited time.

3 -.-...... ..

2

0

-3
-4
-5

Figure 6. Solutions to the Lorenz equations for large Rayleigh number ratio (equations (6)-(8)). The solid
line is the solution to the nonlinear (chaotic) system. The long dashed line is the solution to the zero order
perturbation experiment. The short dashed line is the perturbation solution to first order.

2. Practical problems in estimating chaotic parameters from actual data

Most methods developed for quantifying chaos (e.g., the Grassberger-Procaccia (1983)
method ) require very long data sets in order to converge with a reasonable uncertainty.
Such lengthy data sets do not exist in oceanography, so methods that work with short data
sets (see for example, Ellner (1988), Havstad and Ehlers (1989) or Abraham et al., 1986)
must be used. Also the presence of noise (either due to measurement errors or to small
scale oceanic process) complicates the calculations. In addition, the ill-considered use of
filters applied to the data can make things worse, not better.
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2.1 The effect of noise

Random errors in the observations of a system can complicate the estimation of the fractal
dimension of a system. It has the effect of increasing the apparent dimension of the
system. This is unfortunate since estimation methods have data requirements that grow
exponentially with the dimension of the system.

In addition, while truly random processes ought to be infinitely dimensional, biases in
commonly used dimension algorithms indicate finite dimension when presented with
random data.

For colored noise, the correlations between nearby points can produce effects that mimic
a finite correlation dimension (Theiler, 1991). Osborne and Provenzale (1989) provide an
example of this effect. Kennel and Isabelle (1992) have investigated the possibility of
distinguishing colored noise effects from chaos.

2.2 The effect of filtering the observations

One traditional way to deal with noise in the observations is to apply a filter in an attempt
to remove the frequencies that are attributed to the noise. With chaotic systems, the effect
of the filter is to potentially increase the apparent dimension of the system (Badii et al.,
1988).

Consider a physical system 4i(t) = -F(u) and an ideal lowpass filter, which can be
described as a differential equation that adds to the original system:

i(t) = -17z(t) + X(t) (27)

where z(t) is the filter output, and il is the filter cutoff frequency.

With this filter present, the Lyapunov exponents of the system consist of the original
Lyapunov exponents plus a new one Af = -17 resulting from the filter.

From the Kaplan-Yorke equation for the Lyapunov dimension

DL j + I k (28)

The dimension, DL of the system will remain unchanged as long as

17/> 1Ž,+ 1I.
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Otherwise the dimension of the filtered system will increase. In fact, depending upon the
size of il compared to the other Lyapunov exponents, DL can increase as much as 1. There
has been some work (e.g., Chennaoui et al., 1990) to remove this effect of filtering on
chaotic time series by (at least in a topological sense) unfiltering the time series.

3 Methods from systems dynamics

Even if it turns out that the ocean is not chaotic, certain techniques developed for
analyzing chaotic systems may prove useful. For many of these methods the fact that a
nonlinear system is a chaotic one is not essential for the analysis method to be usable.

3.1 Mutual information and dynamical connections

The mutual information of two (discrete scalar) messages S and Q is (Fraser and Swinney,
1986)

I(Q, S) = H(Q) + H(S) - H(Q,S) (30)
where

H(Q)=- Pq (q, ) log(Pq(q')) (31)

(and similarly for S)

H(Q,S) = P, P(qj,,s)log(Pq,(q,,sj)). (32)

When Q is a set of time delayed measurements (q(t+ T)) then the first minimum of! as a
function of T is a good choice of the lag time in the higher dimensional reconstruction
(Fraser, 1986).

By taking the appropriate limits, we can calculate an information dimension from the
mutual information

D, = Dq +D, -Dq (33)

D, is nonnegative and has the following properties:

D, = Dq when q = s

DJ < Dq when q and s are time shifted versions of each other or when they are

dynamically related (and have the same dimension)
Dt = 0 when q and s are dynamically independent.
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Hence we have a test for synchronizability and for dynamical relatedness. This could
be exploited to determine if two different time series (say one from a model and another
from actual observations) are controlled by the same dynamics or not.

3.2 A theorem on dynamic dependence

The dimensions and entropies of series can also be used to determine whether two systems
are dynamically independent or not. The following theorem is due to Hartt and Kahn,
1990.

Consider a composite system

= [x.-: (34)

where
x., = [Y(tj),Y(t1 + z),... Y(tj + (d -f- 1) r)]T (35)

X•. = [Z(ti),Z(ti + T),...Z(ti +(f - 1) ')] (36)

with combined dimension of d, ((d-f)+ (f)). We investigate the effects of the
dependence and independence of these subsystems. The supremum norm gives

Pab(i0j) = dist(x.fxb.jX'b1 ) = max Xab - Xabj,k (37)
k=0,d-I

where k represents a component. It follows that

pab(ij) = max(pa(i,j),pb(i,j))pab(i,j) = max(pa(ij),pb(i, j)). (38)

The simplest way to obtain dimensions and entropies is to evaluate the generalized
correlation integrals

C q(t) = {Pd 0_ ~-di j))}• r -'| (39)

where N, = number of reference points and N, = number of sample points in the vector

time series. Then

(f - POb(i, j)) = ( - P D(i, ))O(e - Pb (i, )). (40)

There are two important special cases:
* Identical subsystems
* Independent subsystems
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3.2.1 Identical subsystem

in this case p. = Pb, and (f = d = d-f). Here, OV(- p,(ij))O(e-pb(i,j)) = O(e- p.(i,j))
2

and C,.2d (t)=CMCk(t) = C,(e) for all q and f. Asymptotically for -- 0,
a,2 a.2

.b_, M• - In t- exp(-dr Kq,,(d, r)) (41)

and similarly for C, (0). Then

In .d (t) = V•ln t - dKb(d, r)
= vo lne-d rK•,(•) (42)

from which we arrive at

Vab = Va (43)
and

Kab(d) = Kgq(-). (44)

3.2.2 Dynamically independent subsystems

Here, Pb(ij) takes values that are independent of p.(i,j). Then O(t--Pb(i,j)) can be
replaced by its average value over the entire series. The cases q = I and q = 2 are
especially important. In both of these cases it follows

Ca d1M =Q"-. M CCfM (45)

from which asymptotically,

ab V + bV (46)
d

and in the case - = f = d-f,
2

K .I[K',2 + KJ2]. (47)C l 2C a

Clearly, C(i, j) < C(i).
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4 Summary

"* Several oceanic phenomena, El Nifuo and drifter trajectories in particular, are
suggestive of chaos. For El Niio, the presence of chaos is inconclusive. Drifter
trajectories, on the other hand, are probably not chaotic.

"* Limitations on the quantities of data have prevented a definitive conclusion on the
existence of chaos in the ocean.

"* The existence of chaos means that special care must be used when dealing with both
the equations and the data.

"• The properties of dynamically connected chaotic systems may be useful in identifying
the dynamical system.
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ABSTRACT

The physical parameters that are important to oceanographers often have a stochastic nature
and can be represented as the sum of a deterministic average and a random component of zero
mean. Coastline shapes, water depth and fluid density are examples of such quantities. When
the random components are small, perturbation methods can be used to calculate their effects
on the mean flow. However, in certain cases it is the derivative of the random component which
is of importance and that can have a very large magnitude. Consequently, the ostensibly small
stochastic part may well be more influential than the smooth average component. In this paper
we present a technique for quantifying roughness that can be easily implemented for experimental
data sets and apply the method to some bathymetric examples. Moreover, to examine how
such randomness will influence ocean flows we consider the problem of predicting the dispersion
relations for topographic Rossby waves propagating in the presence of a rough ocean floor. The
random depth and its derivative act as coefficients in the equations governing topographic Rossby
waves. In this paper we analytically and numerically examine the solutions to those equations
and consider how they change as the roughness of the bottom increases.

1. INTRODUCTION

Many physical characteristics of importance to the oceanographer have a stochastic
nature and can be represented as the sum of a deterministic average and a random
component of zero mean. Quantities that come to mind include coastline shapes, water
depth and fluid density.

When the random components are small, perturbation methods can be used to
calculate their effects on the mean flow (see for example Mysak (1978)). However, in
certain cases it is the derivative of the random component which is of importance and
that can have a very large magnitude. Consequently, the influence of the ostensibly
small stochastic part may well be of the same, or even larger order, than that of the
smooth average component.

For example, it has long been recognized that variations in the sea floor topography
allows for the propagation of a class of disturbances known as topographic Rossby
waves (see for example Pedlosky (1989)). These flows are spatially extensive and have

397
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large temporal periods. The critical coefficient in the governing equations for such
waves depends on the derivative of the undisturbed water depth. This depth might well
be considered random and rather small (0(1) km.) when compared to the spatial extent
of the waves in question (0(100) km.). However, the derivative of the depth which
appears in the equation can not be treated as a small term.

In past studies, the ocean floor was often treated as a plane with a slight slope and
indeed mathematical analysis then predicts the existence of topographic waves. While it
true that many regions of the ocean can be characterized by having a small mean slope,
it is not apparent that one can ignore other variations in topography in favor of this slope.

A natural question arises then as to whether one can quantitatively characterize the
roughness inherent in bathymetric data. Can one give some reasonable estimate of the
"average slope" of such a data set? In recent years, fractal techniques have proved
popular in similar quests by researchers in many fields. However, dimension estimates
depend on infinite scaling properties that are often not physically justifiable as real
surfaces are self similar only over a limited range of scales. Moreover, as a practical
matter, fractal analyses are simply not formulated with discrete data sets in mind.

In this paper we take an alternative approach based on the geometric thermodynamic
theory for curves and surfaces. The essential ideas are developed in the next section
and are illustrated there by a number of simple examples. We merely note now that the
theory allows one to compute a temperature for a curve or surface. The temperature
of a straight line is zero and the value increases as the curve roughness increases. The
quantity can be successfully measured even for data sets of finite resolution and efficient
algorithms to accomplish this are presented in section 3.

Tools to analyze rough data sets are very useful but it is even more intriguing to
apply those tools to predict how roughness influences oceanographic flows. To that
end we take up the problem of computing the dispersion relations that govern linear
topographic Rossby wave disturbances for an ocean of random depth. The governing
equations, some properties of their solutions, and the numerical methods used to solve
them are described in section 4.

To render the problem computationally tractable, we restrict attention to topographies
that vary in one direction only, i.e. we consider oceans with corrugated floors. Past
investigations by Thomson (1975), Odulo and Pelinovsky (1978) and others have shown
that if the waves are constrained to propagate in the same direction as the bottom relief
then even for simple floors with periodic ripples wave dissipation and reflection are
observed. In particular, the second study showed that the characteristic damping time for
Rossby waves is Td - (Ah/ho)-2. Typical values for the ocean are fairly large-in the 4
months to 3 years range. In this paper we will consider waves propagating in a direction
that is not parallel to the bottom topography and in this case the waves do not dissipate.

It should be pointed out from the start that while the ocean floor can be modelled
stochastically, it is far removed from a white noise state. In this paper most of the



GEOMETRIC THERMODYNAMICS 399

simulations were done for synthetic bottom profiles though some preliminary analysis
has been carried for data sets collected in the North Atlantic and Pacific. Some of the
methods we used to synthesize rough bottom profile are presented in section 5 and their
geometric thermodynamic characteristics are computed.

In section 6 we present results for bathymetries of various temperatures.

2. GEOMETRIC THERMODYNAMICS

In this section we explain how one can formulate a thermodynamic theory for
geometric objects and how one can use that theory to construct quantitative estimates of
the "roughness" of curves. We illustrate the concepts with a number of simple examples.

0 -- - - -- - -- - - ---- - -- . . . . . . . . -Do-

Figure I Random straight line w intersecting curve r at three points. The
convex hull of r is the set of points that lie inside the dashed boundary line.

The fundamental quantity we measure for a curve is the average number of
intersections it has with randomly chosen straight line segments. In general, the rougher
the curve, the larger this number will be. To formalize the idea let F be a rectifiable
curve in the plane and let fl(1) be the set of all straight lines intersecting F. Directly
measuring the number of intersections between a random element W E 11(F) and F is
a computationally intensive task but Blaschke (1936) has shown that if one picks W at
random, with the natural (and as it turns out unique) distribution m that is invariant
under rigid motions of the plane, then the average number of intersections between the
line w and the curve F is given by

21I- (1)

where the convex hull of F, K has boundary aK and we use 1.1 to denote the length of
a curve. A detailed definition of the term convex hull is given in the next section but
its intuitive meaning should be clear from figure (1).


